

A new method of model factor clustering based on second-order sensitivity index

Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences

Wu Qiongli

> Introduction

> Methods

> Verification

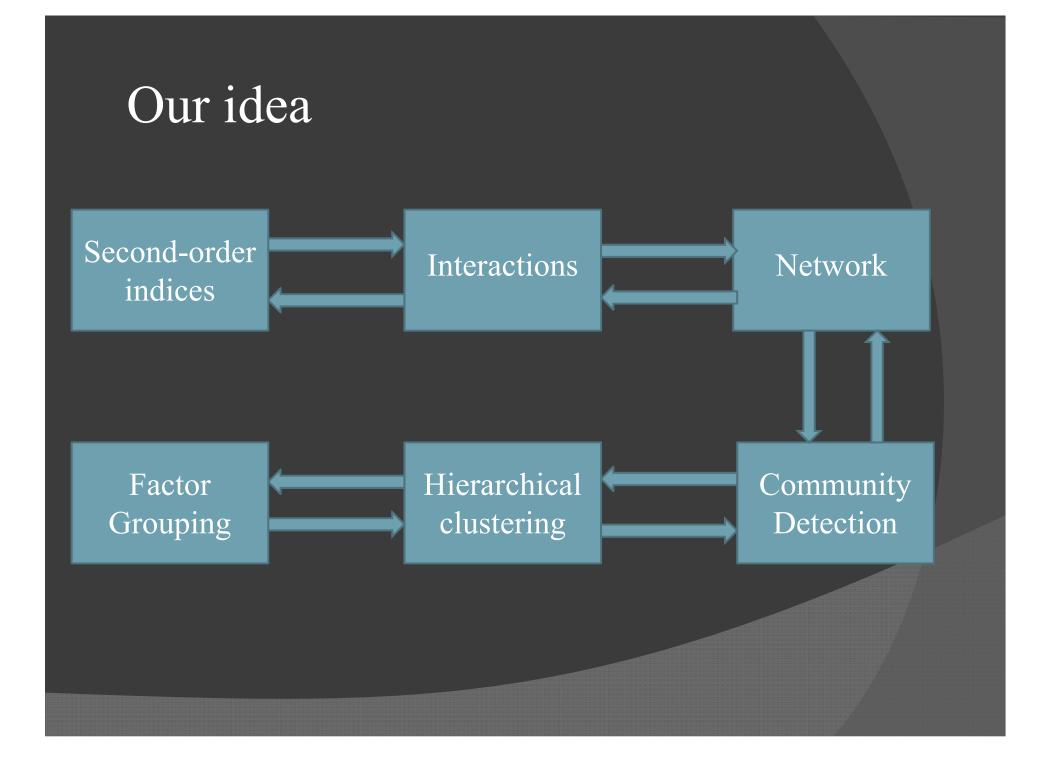
> Test cases

Application to ecological model

Introduction

- Sensitivity Analysis (SA) methods are invaluable tools for model validation, model optimization and model diagnosis...
- Second-order Sobol's indices: interaction between parameters

How to quantitatively understand and use the interactions between parameters indicated by second-order Sobol's indices?



Methods: Second-order Sobol's indices

 $\mathbf{Y} = f(X_1, \dots, X_k)$

$$V(Y) = \sum_{j=1}^{k} V_j + \sum_{1 \le j < l \le k} V_{jl} + \dots + V_{1,2,\dots,k}$$

The first-order sensitivity index S_i for factor X_i :

$$S_i = \frac{V_i(E_{-i}(Y|X_i))}{V(Y)}$$

The second-order sensitivity index S_{ij} for factor X_i and X_j :

$$S_{ij} = \frac{V(E(Y|X_i, X_j))}{V(Y)} - S_i - S_j$$

Methods: Group indices

 $S_{\Omega_m}^g$ main effect of module *m* and helps to rank the group's importance, is defined as:

$$S_{\Omega_m}^g = \frac{V_{i_1, i_2, \dots, i_s}^c}{V(Y)} = \frac{V(E(Y|X_{i_1}, X_{i_2}, \dots, X_{i_s}))}{V(Y)}$$

 $ST_{\Omega_m}^g \text{ provides the total effect of group } m, \text{ is defined as:}$ $ST_{\Omega_m}^g = 1 - \frac{V_{-i_1,i_2,\dots,i_s}^c}{V(Y)} = 1 - \frac{V(E(Y|X_{l_1}, X_{l_2}, \dots, X_{l_{k-s}}))}{V(Y)}$

 $S_{\Omega_{mn}}^{g}$ is the second-order interaction between a pair of groups, is defined as:

$$S_{\Omega_{mn}}^{g} = \frac{V(E(Y|\Omega_{m},\Omega_{n}))}{V(Y)} - S_{\Omega_{m}}^{g} - S_{\Omega_{r}}^{g}$$

Methods: Clustering detection

Hierarchical clustering algorithms

- Does not require a preliminary knowledge on the number and size of the clusters.
- Agglomerative algorithms: clusters are iteratively merged if their interaction is sufficiently high
- Divisive algorithms: clusters are iteratively divided if their interaction is sufficiently low

[Hastie et al., 2001] Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical learning-data mining, inference, and prediction.

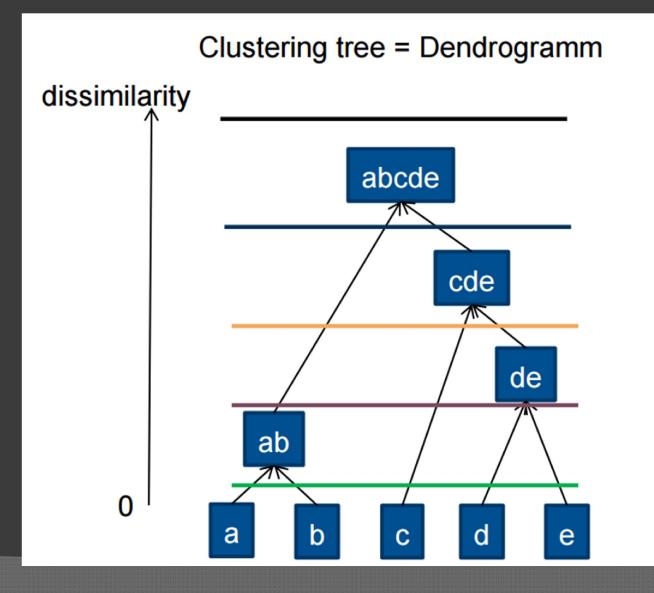
Methods: Clustering detection

Average dissimilarity between the groups is defined:

$$d_{GA}(G, H) = \frac{1}{N_G N_H} \sum_{i \in G} \sum_{i' \in H} d_{ii'}$$

- G and H represent two groups
- $d_{GA}(G, H)$ is the average dissimilarity
- $d_{ii'}$ is the set of pairwise observation dissimilarities, while one member of the pair *i* is in group G and the other *i'* is in group H.
- N_G and N_H are the respective number of observations in each group

Methods: Clustering detection



Verification: Based on G-function Objectives:

- The second-order sensitivity indices represent the interaction between parameters
- The magnitude of the indices reflect the strength of the interaction. \underline{k}

$$g(x_1, x_2, \dots, x_k) = \prod_{i=1}^{n} g_i(x_i)$$
$$g_i(x_i) = \frac{|4x_i - 2| + a_i}{1 + a_i}$$
$$x_i \sim U(0, 1)$$
$$a = [0.2, 0.5, 0.8, 0.9, 1]$$

Verification: Based on G-function

 $F(X) = g(x_1, x_2, ..., x_5) + 0.5g(x_6, x_7, ..., x_{10})$ $+ 0.2g(x_{11}, x_{12}, ..., x_{15})$ (1)

- The interaction between the parameters of the function F(X) are limited within each g function
- Interaction is determined by the structural properties of each g function.

	x1	x2	x3	x4	x5	x6	x7	1 x8	x9	x10	x11	x12	x13	x14	x15
x1	0	2.9929	1.1975	2.3829	1.0739	0	0	_ 0	0	0	0	0	0	0	0
x2	2.9929	0	0.96	1.2934	1.2812	0	0	0	0	0	0	0	0	0	0
x3	1.1975	0.96	0	0.2406	0.8549	0	0	0	0	0	9		0	0	0
x4	2.3829	1.2934	0.2406	0	0.5986	0	0	0	0	0	0	0	0	0	0
x5	1.0739	1.2812	0.8549	0.5986	0	0	0	0	0	0	0	0	0	0	0
x6	0	0	0	0	0	0	0.6199	0.5744	0.6882	0.464	0	0	0	0	A
x7	0	0	0	0	0	0.6199	0	0.2234	0.0216	0.4241	0	0	0	0	• 4
x8	0	0	0	0	0	0.5744	0.2234	0	0.0216	0.2265	0	0	0	0	0
x9	0	0	0	0	0	0.6882	0.0216	0.0216	0	0.0216	0	0	0	0	0
x10	0	0	0	0	0	0.464	0.4241	0.2265	0.0216	0	0	0	0	0	0
x11	0	0	0	0	0	0	0	0	0	0	0	0.0479	0.2077	0.0216	0.0986
x12	0	0	0	0	0	0	0	0	0	0	0.0479	0	0.0216	0.0646	0.2838
x13	0	0	0	0	0	0	0	0	0	0	0.2077	0.0216	0	0.0867	0.0255
x14	0	0	0	0	0	0	0	0	0	0	0.0216	0.0646	0.0867	0	0.1298
x15	0	0	0	0	0	0	0	0	0	0	0.0986	0.2838	0.0255	0.1298	0

Table 1:Second-order sensitivity indices for function (1)(percentage)

$$S_{ij} = \begin{cases} 0 & |S_{ij}| \le 10^{-6} \\ \min(S_{ij} > 0) & S_{ij} < 0 \& |S_{ij}| > 10^{-6} \end{cases}$$

Test cases

The steps of our test cases are as following:

- Calculate the second-order sensitivity indices by Sobol's
- Interaction matrix of second-order indices
- Obtain 0-1 matrix by taking a certain threshold value to the interaction matrix
- Clustering detection, get the grouping result

Test case 1

 $F = g(x_1, x_2, ..., x_5) + g(x_6, x_7, ..., x_{10})$ $+ g_1(x_1) \cdot g_8(x_8) + g_3(x_3) \cdot g_7(x_7)$ $+ g_4(x_4) \cdot g_{10}(x_{10})$ (2)

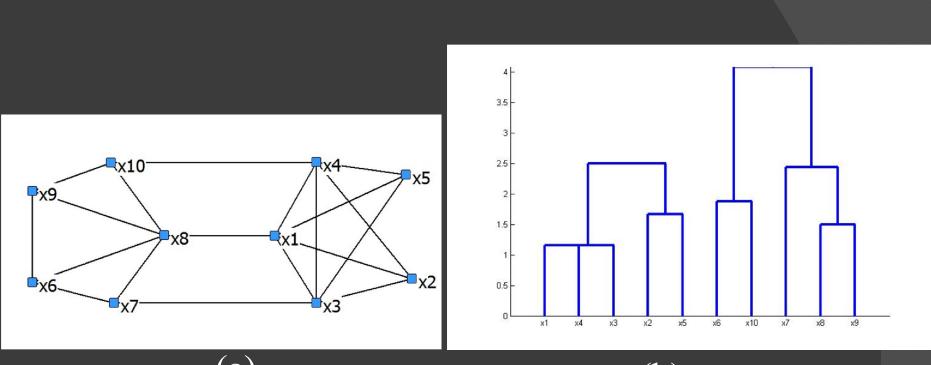
- Linear combination of two g-functions
- Interaction items between two factors

	x1	x2	x3	x4	x5	x6	x7	x8	x9	x10
x1	0	0.9027	1.0048	0.3695	0.4228	0	0	1.5308	0	0
x2	0.9027	0	0.3857	0.1778	0.0779	0	0	0	0	0
x3	1.0048	0.3857	0	0.1072	0.1836	0	0.2988	0	0	0
x4	0.3695	0.1778	0.1072	0	0.2033	0	0	0	0	0.204
x5	0.4228	0.0779	0.1836	0.2033	0	0	0	0	0	0
x6	0	0	0	0	0	0	0.4668	0.1894	0.502	0.0375
x7	0	0	0.2988	0	0	0.4668	0	0.2489	0.0375	0.0375
x8	1.5308	0	0	0	0	0.1894	0.2489	0	0.1383	0.357
x9	0	0	0	0	0	0.502	0.0375	0.1383	0	0.1387
x10	0	0	0	0.204	0	0.0375	0.0375	0.357	0.1387	0

Table 2: second-order sensitivity indices for function (2)

	x 1	x2	x3	x4	x5	x6	x7	x8	x9	x10
x1	0	1	1	1	1	0	0	1	0	0
x2	1	0	1	1	0	0	0	0	0	0
x3	1	1	0	1	1	0	1	0	0	0
x4	1	1	1	0	1	0	0	0	0	1
x5	1	0	1	1	0	0	0	0	0	0
x6	0	0	0	0	0	0	1	1	1	0
x7	0	0	1	0	0	1	0	1	0	0
x8	1	0	0	0	0	1	1	0	1	1
x9	0	0	0	0	0	1	0	1	0	1
x10	0	0	0	1	0	0	0	1	1	0

Table 3: 0-1 matrix of Table 2



(a)

(b)

Figure 1: Network structure and grouping result of the model function (2)

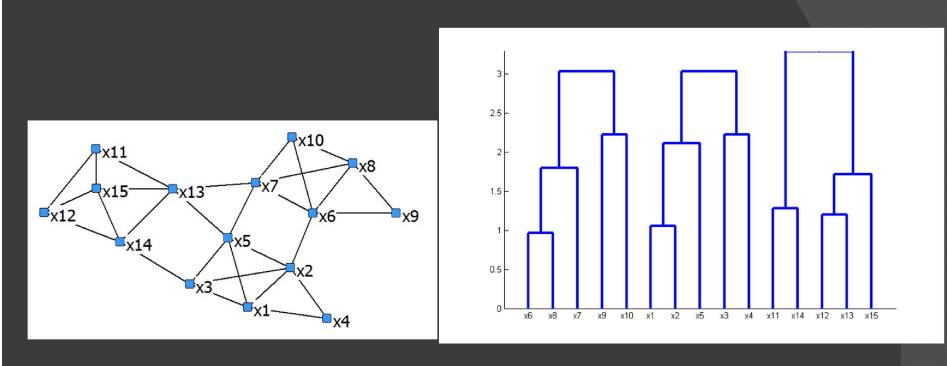
Test case 2

$$F = g(x_1, x_2, \dots, x_5) + g(x_6, x_7, \dots, x_{10}) + g(x_{11}, x_{12}, \dots, x_{15}) + g_2(x_2) \cdot g_6(x_6) + g_5(x_5) \cdot g_7(x_7) \cdot g_{13}(x_{13}) + g_3(x_3) \cdot g_{12}(x_{12}) \cdot g_{14}(x_{14})$$

• Linear combination of three g-functions

(3)

• Interaction items between two/three factors



(a)

(b)

Figure 2: Network structure and grouping result of the model function (3)

Application to ecological model: Lotka-Volterra

The three species Lotka-Volterra competitory ecological model equations are as following:

$$x' = a_1 x - b_1 x^2 - c_1 xy$$

$$y' = -a_2 y + c_2 xy - b_2 y^2 - c_3 yz$$

$$z' = -a_3 z + c_4 yz - b_3 z^2$$

Variables x, y, z denote the size of the plant, herbivore and carnivores populations.

coefficients	distribution	meaning					
al	U[0.5,1.5]	intrinsic rate of plant nature increase					
a2	U[0.18,0.42]	mortality of herbivore					
a3	U[0.28,0.52]	mortality of carnivores					
b1 U[0.015,0.045]		internal interaction in plant					
b2	U[0.012,0.028]	internal interaction in herbivore					
b3	U[0.007,0.013]	internal interaction in carnivores					
c1	U[0.04,0.16]	proportionality constant linking plant mortality to the number of plant and herbivore					
c2	U[0.025,0.075]	proportionality constant linking increase in predator to the number of plant and herbivore					
c3	U[0.01,0.03]	proportionality constant linking herbivore mortality to the number of herbivore and carnivores					
c4	U[0.036,0.084]	proportionality constant linking increase in predator to the number of herbivore and carnivores					

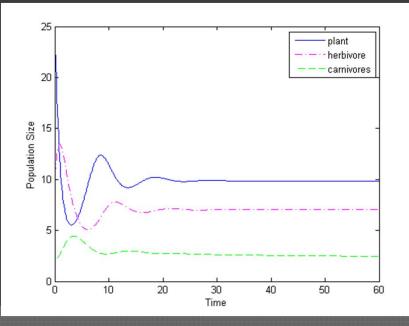
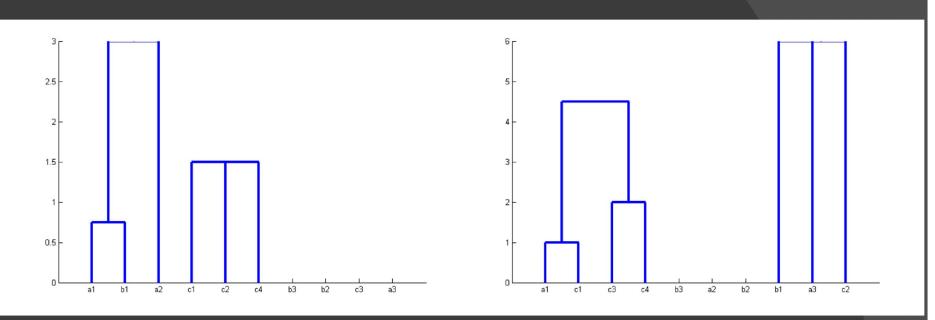
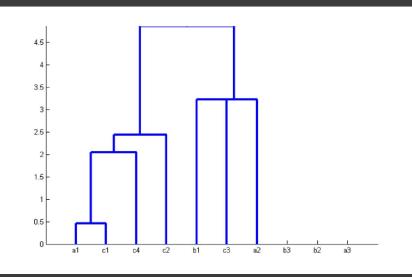


Table 4: The distribution of the factors

Figure 3: Stimulated evolution of Lotka-Volterra model



(a)



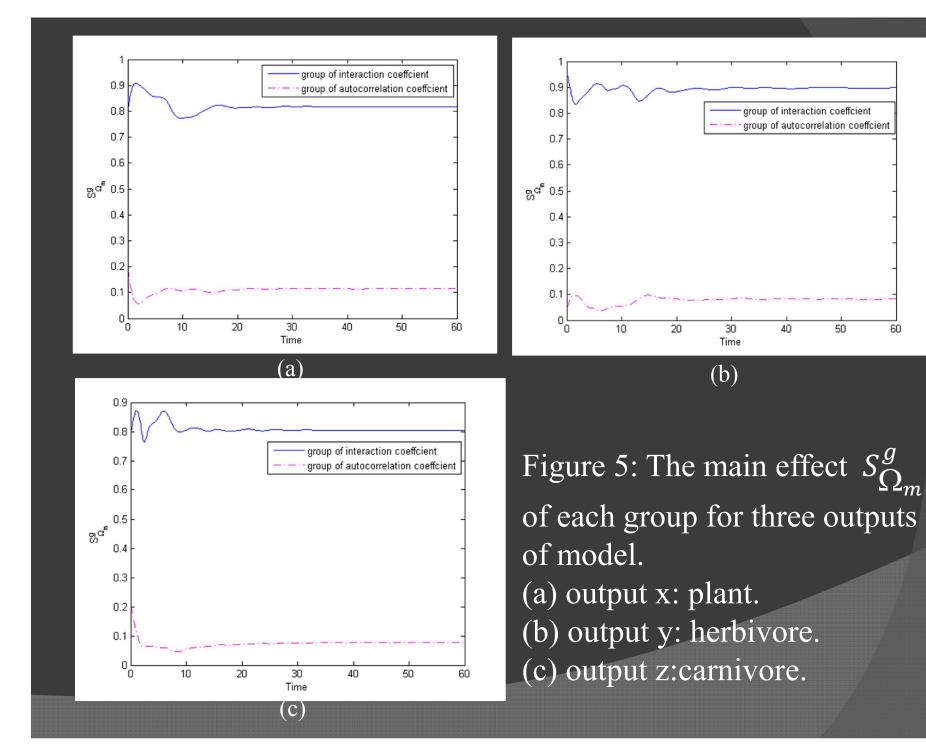
(c)

Figure 4:
(a): Take x: the amount of plant as the model output
(b): Take y: the amount of herbivore as the model output
(c): Take z: the amount of carnivores as the model output

Application to ecological model: Lotka-Volterra-group analysis

- Group index $S_{\Omega_m}^g$ which represent the main effect of the group to the corresponding output.
- The comparison of the three outputs for indices $S_{\Omega_m}^g$ and $ST_{\Omega_m}^g$.
- Comparison of the interaction inter(a. $S_{\Omega_{mn}}^g$) and inner(b. $S_{\Omega_{m}-in}^g$) groups for three outputs.

[Wu and Cournede, 2014] Wu, Q. and Cournede, P.-H. (2014). A comprehensive methodology of global sensitivity analysis for complex mechanistic models with an application to plant growth. Ecological Complexity, 20:219-232.



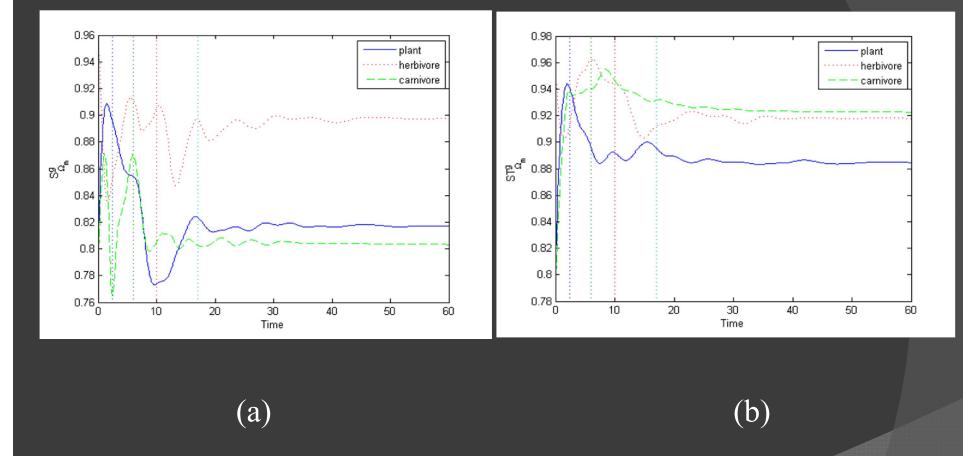


Figure 6: Comparison of the group main effect, total effect of the three outputs, take the group of interaction coefficient in the case.

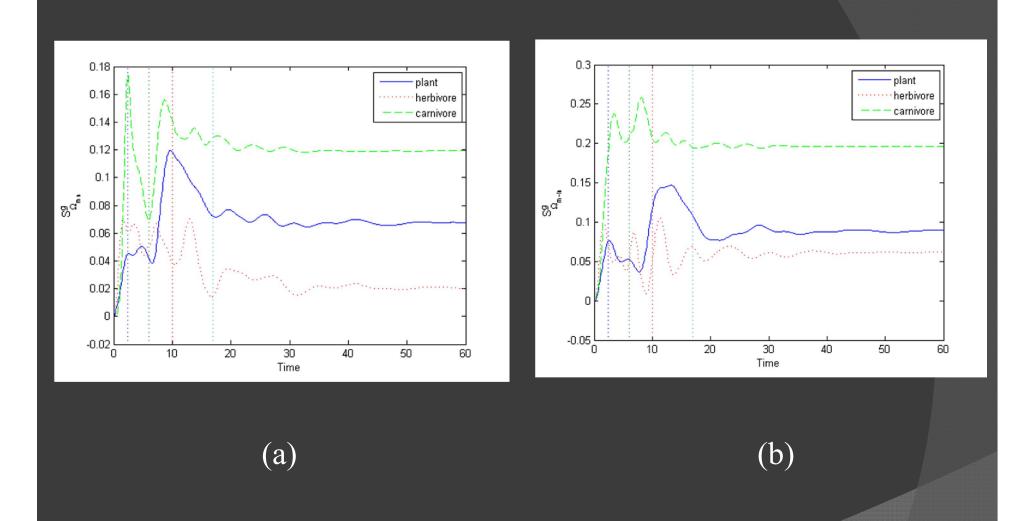
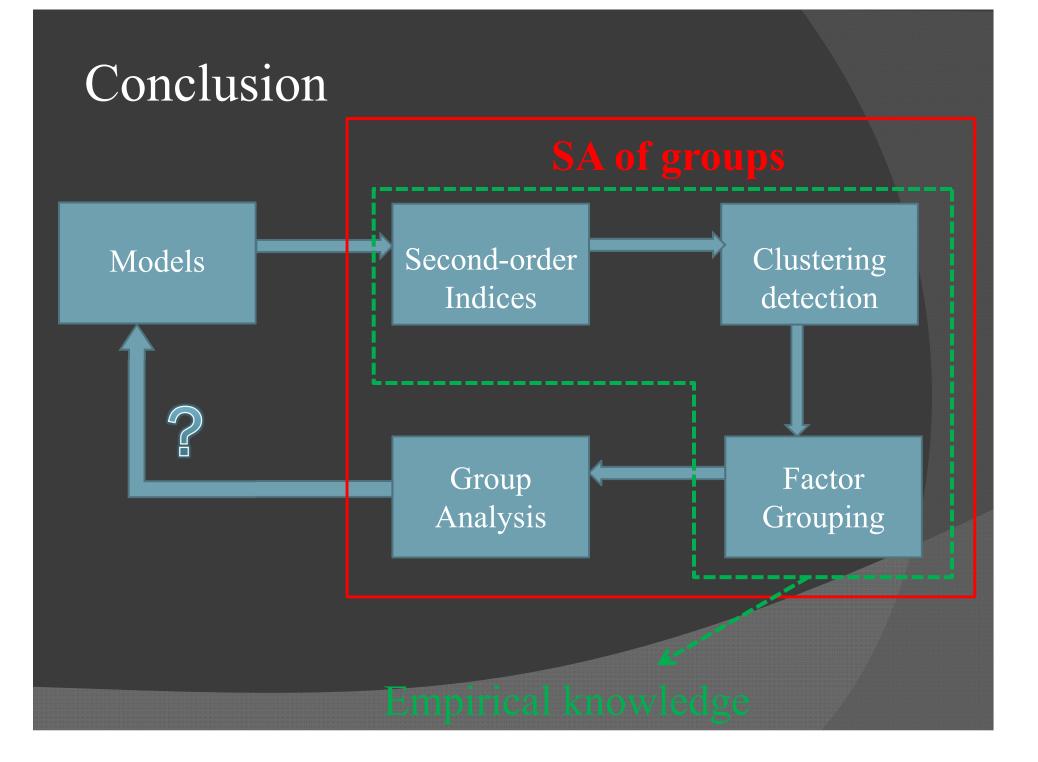
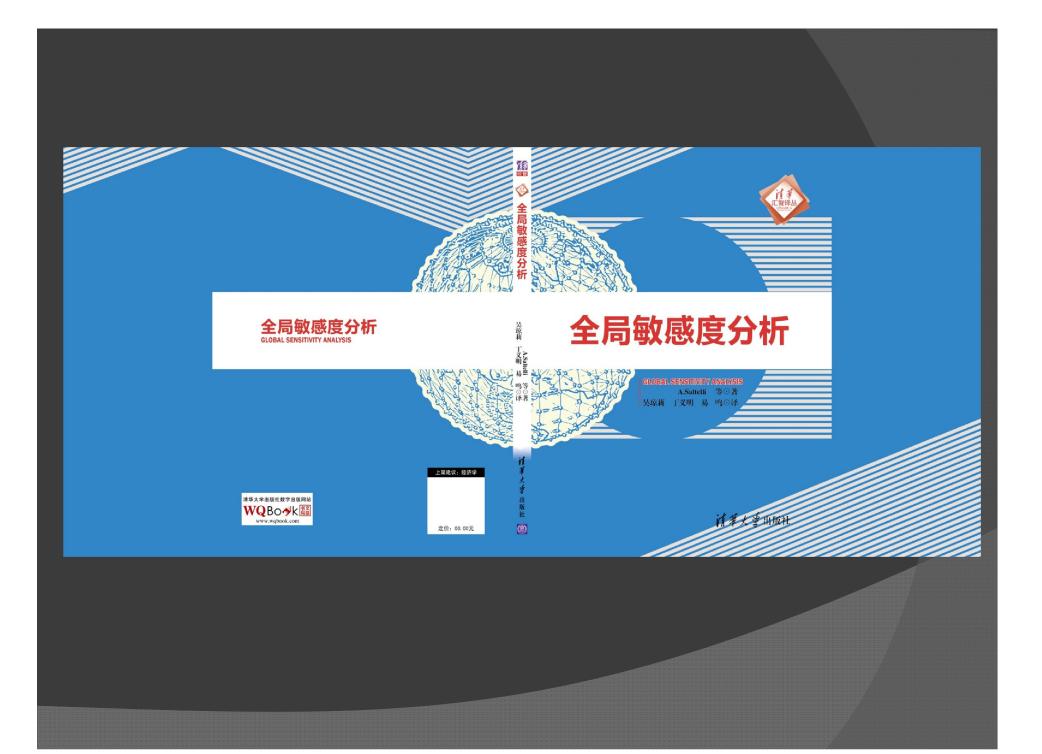


Figure 7: Comparison of the interaction inter and inner groups for three outputs, take the group of interaction coefficient in the case.





Thank you !

Qiongli Wu Associate Research Fellow Lab of Data Analysis and Statistical Computation Wuhan Institute of Physics and Mathematics (WIPM) Chinese Academy of Sciences (CAS) Wuhan, 430071, China

wuqiongli@wipm.ac.cn