Identification of influential parameters in building energy simulation and life cycle assessment

Marie-Lise Pannier, <u>Patrick Schalbart</u>, Bruno Peuportier Session: Application in Building and Energy Systems

Sensitivity Analysis of Model Output | 30th November – 3rd December 2016

• European climate and energy framework for 2030

• Building : a key sector

→ Need of eco-design tools to reduce these impacts

Building energy and environmental simulation at Mines Paris

- Development of eco-design tools since 1990
- Dynamic Building Energy Simulation (DBES)
 - Thermal zones
 - Temperature, heating and cooling loads Peuportier and Blanc-Sommereux, 1990

Building Life Cycle Assessment (LCA)

Polster, 1995 and Popovici, 2005

Time dependant non linear system Graphic modeling tool (Alguance)

Model: large number of equations based on heat balance

- Computing time A few seconds Computing time Computing time
- Model validation
 - Software inter-comparison (e.g. Bestest)
 - Output comparison with measurements
 - Sensitivity analysis (ANR Fiabilité...)

4

thermal load

Building and

district LCA tool

(NovaEQUER)

Building energy and environmental simulation at Mines Paris

Building energy and environmental simulation at Mines Paris

O Current work

- Sensitivity and uncertainty analysis
 - DBES model validation Munaretto, 2014 and Recht et al., 2014
 - Model robustness
 - Performance guarantee

- Calibration (bayesian)
 - Better knowledge on the uncertainties on the building model for:
 - Regulation Robillart, 2015
 - Performance guarantee

- Optimisation (genetic algorithm)
 - Best design compromise for lacksquarebuilding cost and climate change
 - Under constraint: net plus energy building
 - Recht, 2016

Development of a multisimulation platform

Sensitivity analysis in building LCA

• Building LCA tools: need of a robust decision making process

- Variant comparisons
 - More precise definition of the density functions of influential factors
 - Selection of the more sustainable built alternatives

6

Case study and methodology

• Case study: single family house in concrete (INCAS platform)

22 uncertain factors

- Building envelope
- Occupancy
- Climate and site
- Building lifetime
- Urban characteristics
- Life cycle inventory data
- Life cycle impact assessment methods

 Parameters (insulation thickness...)
 Variables (outdoor temperature...)
 Categorical inputs (time horizon for the global warming potential...)

- Comparison of SA methods
 - Identification of contributors to environmental impacts
 - Selection of the most appropriate methods

SA methods comparison

• Min-max SA (MMSA)

$$S_{j} = f(x_{1,ref},...,a_{j},...,x_{K,ref}) - f(x_{1,ref},...,b_{j},...,x_{K,ref})$$

- For categorical inputs: two contrasting scenarios considered
- Plackett and Burman (PB)
 - DoE based on a Hadamard matrix
 - 20 repetitions with changed factors' order to avoid aliasing
 - For categorical inputs: two contrasting scenarios considered

SA comparison

- Standard Regression Coefficient (SRC²)
 - N = 5000
 - Monte Carlo sampling

Morris screening

- 100 repetitions and 6 levels
- Aggregation of linear and nonlinear effects, and interactions

$$d_{j}^{*} = \sqrt{\left(\mu_{j}^{*^{2}} + \sigma_{j}^{2}\right)}$$

 NB: Adaptation of the elementary effect calculation for categorical input

$$EE_{j_{Cat}}^{i} = \frac{f(x_{1}^{i},...,x_{j_{A}}^{i},...,x_{K}^{i}) - f(x_{1}^{i},...,x_{j_{B}}^{i},...,x_{K}^{i})}{1}$$

- Variance based SA
 - Sobol total indices
 - N = 1000
 - LHS sampling

Results comparison of the SA methods

- Insulation thickness
- Concrete thickness
- Concrete type
- Global horizontal radiation
- Painting lifetime
- Waste material transportation
- Albedo
- Ventilation
- Windows solar factor
- Windows thermal resistance
- Internal gain
- Occupancy
- Material transportation
- Windows lifetime
- Water network efficiency
- Material loss rate
- Outdoor temperature
- Indoor temperature setpoint
- Thermal bridges
- Electricity mix
- IPCC time horizon
- Building lifetime

- Influence of one factor relatively to the sum of the influence of all factors
- Factors identified by
 Sobol: also identified by
 other methods

Calculation time

MMSA: 4 min PB: 40 min Morris: 2h40 SRC²: 5h30 GSA: 30h

Results comparison of the SA methods

Differences in the relative influence

	Interactions and non linearity	Levels	Underlying distributions	Quantification of uncertainty
MMSA	×	2	Uniform	Effect
PB	×	2	Uniform	Variance
Morris	\checkmark	6	Uniform	Effect
SRC ²	×	ø	Normal	Variance
Sobol	\checkmark	∞	Normal	Variance

- Methods comparison with
 - More level for PB
 - A uniform distribution for the GSA methods
 - Computing variance for the Morris screening

Methods adaptation

- Increasing the number of levels for PB
 - 6 levels (similar to Morris screening)
 - At each repetition:
 - Change the factor order
 - Change the couple of 2 levels for each factor
- Computing variance for Morris method

• For each repetition r:
$$EV_i = \left[f(x_{j_{level}_l}) - f(x_{j_{level}_l+\delta_{x_j}}) \right]^2$$

• Mean of the squared difference :

$$: V_{j} = \frac{1}{r} \sum_{i=1}^{r} EV_{i}$$

• Influence : Influence $_{j} = \frac{V_{j}}{\sum V_{j}}$

Identification of influential uncertain factors

O Results comparison of the SA methods for three indicators Adapted methods **GWP Human Health** Energy Insulation thickness 100% Concrete thickness Concrete type 90% Global horizontal radiation Painting lifetime 80% Waste material transportation 70% Albedo Ventilation 60% Windows solar factor Windows thermal resistance 50% Internal gain 40% Occupancy Material transportation 30% Windows lifetime Water network efficiency 20% Material loss rate 10% Outdoor temperature Indoor temperature setpoint 0% Thermal bridges MMSA Evels Noris... U U MNSA EVERS Var 2000 MMSA evels var 2 U U U Electricity mix IPCC time horizon Building lifetime

Identification of influential uncertain factors

O SA methods selection criterions

	Precision	Calculation time	Case study (assumption of linearity)
MMSA		+ + +	Well known
PB		+ +	Well known
Adapted PB	+	+	Well known
Morris		+	Little knowledge
Adapted Morris +		+	Little knowledge
SRC ²	+	-	Well known
Sobol	++		Little knowledge

Conclusions and perspectives

- Identification of influential factors
 - Simplification of the data input
 - Results robustness
- Different methods for different objectives
 - Possibility to get quickly results that are close from those of the GSA methods
- Future work
 - Application in variants' comparison
 - Include more uncertain factors in further studies
 - Larger scale (district)

16

Thank you for your attention

CES Centre Efficacité énergétique des Systèmes

Current indicator set

- Human Health (EI99)
- Biodiversity (El99)
- Global warming potential (GWP100, IPCC)
- Acidification potential (CML)
- Eutrophication potential (CML)
- Photochemical ozone formation potential (CML)
- Malodorous air (CML)
- Depletion of Abiotic Resources (CML)
- Primary Energy demand (CED)
- Water consumption
- Radioactive waste
- Waste generation

Multi simulation platform

