PC EXPANSION FOR GLOBAL SENSITIVITY ANALYSIS OF NON-SMOOTH FUNCTIONALS OF UNCERTAIN STOCHASTIC DIFFERENTIAL EQUATIONS SOLUTIONS

M. Navarro¹, O.P. Le Maître^{1,2}, O.M. Knio^{1,3} mariaisabel.navarrojimenez@kaust.edu.sa

¹CEMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, KSA.
²LIMSI-CNRS, UPR-3251, Orsay, France.
³ Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

SAMO 2016

VIII International Conference on Sensitivity Analysis of Model Output, 30 Nov-3 Dec 2016, Le Tampon, Réunion, France.

Center for Uncertainty Quantification

・ロト ・ 同 ト ・ 回 ト ・ 回 ト

NON-INTRUSIVE PSP FOR SDES WITH PARAMETRIC UNCERTAINTY

NUMERICAL EXAMPLES

CONCLUSIONS

NON-INTRUSIVE PSP FOR SDES WITH PARAMETRIC UNCERTAINTY

NUMERICAL EXAMPLES

CONCLUSIONS

MODEL DEFINITION

Let (Ω, Σ, P) be a probability space in which we consider the following SDE:

$$dX(t,\omega) = C(X(t,\omega))dt + D(X(t,\omega))dW(t,\omega)$$

$$X(t=0,\omega) = X_{(0)}$$
(1)

where:

- \blacktriangleright X : $(t, \omega) \in T \times \Omega \mapsto \mathbb{R}$ is a stochastic process defined in the time interval $T = [0, T_f]$ with $T_f > 0$
- W(t, ω) is a Wiener process
- C : $\mathbb{R} \mapsto \mathbb{R}$ is the **drift** coefficient and $D : \mathbb{R} \mapsto \mathbb{R}$ is the **diffusion** coefficient

Note that there is only one source of randomness in SDE (1), the Wiener process.

We consider uncertain drift and diffusion coefficients through the introduction of random parameters $\xi(\omega)$

$$dX(t,\omega) = C(X(t,\omega),\xi(\omega))dt + D(X(t,\omega),\xi(\omega))dW(t,\omega)$$

$$X(t=0,\xi(\omega)) = X_{(0)}(\xi(\omega))$$
(2)

Note that there are two sources of randomness in SDE (2), the Wiener process and the uncertain parameters.

Center for Uncertainty Quantification

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

VARIANCE DECOMPOSITION

The variance-based GSA of X relies on its Sobol-Hoeffding (SH) decomposition:

$$X = \bar{X} + X_{\text{par}}(\boldsymbol{\xi}) + X_{\text{noise}}(W) + X_{\text{mix}}(\boldsymbol{\xi}, W),$$
(3)

where:

 $\blacktriangleright \quad \bar{X} = \mathbb{E} \{X\}$

$$X_{\text{par}}(\boldsymbol{\xi}) = \mathbb{E}\left\{X|\boldsymbol{\xi}\right\} - \bar{X}$$

- $X_{\text{noise}}(W) = \mathbb{E} \{ X | W \} \bar{X}$
- $X_{\text{mix}}(\boldsymbol{\xi}, W) = X \bar{X} \mathbb{E} \{ X | \boldsymbol{\xi} \} \mathbb{E} \{ X | W \}$

Since the SH functions on the rhs of (3) are orthogonal, \mathbb{V} {*X*} can be decomposed as:

$$\mathbb{V}\left\{X\right\} = V_{\mathsf{par}} + V_{\mathsf{noise}} + V_{\mathsf{mix}},$$

where:

- 1. V_{par} is the variance due to the parametric uncertainty
- 2. V_{noise} is the variance due to the Wiener noise
- 3. V_{mix} is the variance due their interactions

Finally the sensitivity indices (SI) are computed:

$$S_{\text{par}} = \frac{V_{\text{par}}}{\mathbb{V}\{X\}}, \quad S_{\text{noise}} = \frac{V_{\text{noise}}}{\mathbb{V}\{X\}}, \quad S_{\text{mix}} = \frac{V_{\text{mix}}}{\mathbb{V}\{X\}}.$$

$$| \begin{array}{c} \text{Center for Uncertainty} \\ \text{Quantification} \end{array} \rangle$$

POLYNOMIAL CHAOS EXPANSION (PCE)

Assumptions:

- 1. The Wiener noise and the uncertain parameters are considered as independent random variables
- The solution of SDE (2), X(t, W, ξ), is a second order random variable for almost any trajectory of W(t)
- $X(t, W, \xi)$ admits a truncated PC expansion of the form [1]:

$$X(t, W, \boldsymbol{\xi}) pprox \widehat{X}(t, W, \boldsymbol{\xi}) = \sum_{oldsymbol{lpha} \in \mathscr{A}} [X_{oldsymbol{lpha}}](t, W) \Psi_{oldsymbol{lpha}}(\boldsymbol{\xi})$$

where:

 $\boldsymbol{\xi}(\omega) \equiv \boldsymbol{\xi} = \{\xi_1, \cdots, \xi_N\}$ where ξ_i is a real-valued independent random variable (rv) with pdf $p_i(\xi_i)$

• $\alpha = (\alpha_1, \ldots, \alpha_N)$ is a multi-index

- $\Psi_{\alpha}(\boldsymbol{\xi})$ are multivariate orthonormal polynomials defined through, $\Psi_{\alpha}(\boldsymbol{\xi}) \doteq \prod_{i=1}^{N} \psi_{\alpha_{i}}^{i}(\xi_{i})$, where $\{\psi_{\alpha}^{i}, \alpha \in \mathbb{N}_{0}\}$ is a complete orthonormal set with respect to $\rho_{i}(\xi_{i})$
- The random processes $[X_{\alpha}]$ are the modes of the expansion.

Center for Uncertainty Quantification

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

NON-INTRUSIVE PSEUDO SPECTRAL PROJECTION (PSP)

To compute the modes, $[X_{\alpha}](t, W)$ for $\alpha \in \mathscr{A}$, we rely on **non-intrusive PSP**

$$[X_{\alpha}](t,W) = \sum_{j=1}^{N_Q} \mathscr{P}_{\alpha j}^{\mathrm{PSP}} X(t,W,\boldsymbol{\xi}_j),$$

where:

- *P*^{SP} is a non-intrusive operator that uses sparse tensorization of one-dimensional projection operators at different levels
- N_O is the number of sparse grids points
- ξ_i are the quadrature points

In particular, one SDE at each N_Q is solved for a particular trajectory $W^{(i)} = W(\omega_i)$. The **expansion coefficients** of the corresponding trajectory of X(t) are finally obtained through:

$$[X_{\alpha}]^{(i)}(t) = \sum_{j=1}^{N_Q} \mathscr{P}_{\alpha j}^{\mathrm{PSP}} X^{(i)}(t, \boldsymbol{\xi}_j)$$

Center for Uncertainty Quantification

▲□▶▲□▶▲□▶▲□▶ □ のQ@

PC expansion of X:

$$X(t, W, \boldsymbol{\xi}) \approx \widehat{X}(t, W, \boldsymbol{\xi}) = \sum_{\boldsymbol{\alpha} \in \mathscr{A}} [X_{\boldsymbol{\alpha}}](t, W) \Psi_{\boldsymbol{\alpha}}(\boldsymbol{\xi})$$

The approximated **expressions of the statistic** of the SDE solution can be obtained **using the PC coefficients**:

Center for Uncertainty Quantification

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

•
$$\bar{X} \approx \sum_{\alpha \in \mathscr{A}} \mathbb{E} \{[X_{\alpha}](W)\} \mathbb{E} \{\Psi_{\alpha}\} = \mathbb{E} \{[X_{0}](W)\}$$

• $\mathbb{V} \{X\} = \mathbb{E} \{X^{2}\} - \bar{X}^{2} \approx \sum_{\alpha \in \mathscr{A}} \mathbb{E} \{[X_{\alpha}]^{2}\} - \mathbb{E} \{[X_{0}]\}^{2}$
• $S_{\text{par}} = \frac{V_{\text{par}}}{\mathbb{V}\{X\}} \text{ and } V_{\text{par}} = \sum_{\alpha \in \mathscr{A} \setminus \mathbf{0}} \mathbb{E} \{[X_{\alpha}]\}^{2}$
• $S_{\text{noise}} = \frac{V_{\text{noise}}}{\mathbb{V}\{X\}} \text{ and } V_{\text{noise}} = \mathbb{V} \{[X_{0}]\}$
• $S_{\text{mix}} = \frac{V_{\text{mix}}}{\mathbb{V}\{X\}} \text{ and } V_{\text{mix}} = \sum_{\alpha \in \mathscr{A} \setminus \mathbf{0}} \mathbb{V} \{[X_{\alpha}]\}$

For a detailed proof see [2]

NON-INTRUSIVE PSP FOR SDES WITH PARAMETRIC UNCERTAINTY

NUMERICAL EXAMPLES

CONCLUSIONS

Let us consider the process governed by the following SDE

$$dX(W, \boldsymbol{\xi}) = (\xi_1 - X(W, \boldsymbol{\xi}))dt + (\nu X(W, \boldsymbol{\xi}) + 1)\xi_2 dW$$

$$X(t = 0) = 0 \text{ almost surely}$$
(4)

Center for Uncertainty Quantification

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

where:

- ξ_1 and ξ_2 are independent and uniformly distributed random variables $\xi_1 \sim \mathcal{U}([0.95, 1.15])$ and $\xi_2 \sim \mathcal{U}([0.02, 0.22])$
- ν = 0.2 so the problem has multiplicative noise
- Note that for v = 0, X is the Ornstein-Uhlenbeck (OU) process

FIGURE: Samples trajectories of *X* computed using the PC expansion. (A) Trajectories for samples of *W* at a fixed value of the parameters $\xi_1 = 1.05$ and $\xi_2 = 0.12$. (B) Trajectories for samples of $\boldsymbol{\xi}$ and a fixed realization of *W*. $\xi_1 \sim \mathcal{U}[0.95, 0.15]$ and $\xi_2 \sim \mathcal{U}[0.02, 0.22]$.

Center for Uncertainty Quantification

э

ヘロト ヘ回ト ヘヨト ヘヨト

Assuming that we are not interested in $X(t, W, \xi)$, but in some **derived quantity** such as the integral of X over $t \in [0, 10]$:

$$A(W,\boldsymbol{\xi}) \doteq \int_0^{10} X(t,W,\boldsymbol{\xi}) dt.$$

FIGURE: (A) Different trajectories of X, for a fixed noise $W^{(i)}$ and different realizations of $\boldsymbol{\xi}$. (b) $A^{(i)}(\boldsymbol{\xi})$ versus ξ_1 and ξ_2 for fixed $W^{(i)}$.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology Center for Uncertainty Quantification

・ロット (雪) (日) (日)

CONVERGENCE OF THE DIRECT NI PROJECTION

FIGURE: (A) $A - \hat{A}$ versus $\boldsymbol{\xi}$ for fixed $W^{(l)}$. Plotted are 2D surfaces for $\ell = 1, 2$ and 3 arranged from left to right. (B) Normalized L_2 error versus ℓ (left) and $\log(N_Q)$ (right).

Center for Uncertainty Quantification

・ロト ・ 四ト ・ ヨト ・ ヨト

CONVERGENCE OF THE SENSITIVITY INDICES

FIGURE: S_{par} , S_{noise} and S_{mix} versus N_W for different PSP levels. Also shown for comparison are the estimators for a direct MC approach (without PSP approximation, labeled MC). The solid lines correspond to the settings of the *Test problem*, whereas dashed lines correspond to results obtained using PSP with a reduced diffusion coefficient $\xi_p \sim \frac{\alpha}{2} [0.02, 0.03]$.

Center for Uncertainty Quantification

э

(日)

Error of the Sensitivity indices

(B) SE versus computational cost which is estimated as $N_Q \times N_W$.

FIGURE: Standard Errors in the sensitivity indices of *A*, using the direct PSP with $N_Q = 5$ and standard MC methods. The solid lines correspond to the settings of *Test problem*, whereas the dashed lines correspond to the reduced diffusion coefficient $\xi_2 \sim \mathscr{U}$ [0.02, 0.03].

Center for Uncertainty Quantification

(日)

CASE OF NON-SMOOTH QOI

We continue to consider the solution, X, of the SDE in (4), but focus on the variance decomposition of the exit time, T, corresponding to the exit boundary X = c:

 $T(W, \boldsymbol{\xi}) = \min_{t>0} \{X(t, W, \boldsymbol{\xi}) > c\} \quad \text{we set } c = 1.$

FIGURE: (A) Different trajectories of X, for a fixed noise $W^{(i)}$ and different realizations of $\boldsymbol{\xi}$. (B) $T^{(i)}(\boldsymbol{\xi})$ versus ξ_1 and ξ_2 for fixed $W^{(i)}$.

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology Center for Uncertainty Quantification

・ コット (雪) (小田) (コット 日)

DIRECT NI PROJECTION OF NON-SMOOTH QOI

FIGURE: Direct PSP approximation of $T(W^{(i)}, \xi)$ for different levels ℓ as indicated. Also shown as circles are the sparse grid points used in the PSP constructions.

Center for Uncertainty Quantification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

KEY IDEA: the exact exit time T (or its direct non-intrusive approximation) is substituted with the surrogate $\tilde{T} = T(\hat{X})$, *indirectly* constructed through

$$T(W, \boldsymbol{\xi}) \approx \tilde{T}(W, \boldsymbol{\xi}) = \min_{t>0} \{ \hat{X}(t, W, \boldsymbol{\xi}) > c = 1 \},$$

where:

$$\hat{X}(t, W, \boldsymbol{\xi}) = \sum_{\boldsymbol{\alpha} \in \mathscr{A}} [X_{\boldsymbol{\alpha}}](t, W) \Psi_{\boldsymbol{\alpha}}(\boldsymbol{\xi})$$

	Center for Uncertainty Quantification												
4		•	< 6	1		÷	•		÷	•	=	990	

CONVERGENCE OF THE INDIRECT NON-INTRUSIVE PSP PROJECTION

FIGURE: Indirect approximation \tilde{T} of the exit time (top row) and absolute indirect approximation error $T - \tilde{T}$ (bottom row). The plots correspond to a fixed trajectory W of the noise and different PSP levels ℓ as indicated.

Center for Uncertainty Quantification

Convergence of the indirect non-intrusive PSP projection

FIGURE: L_2 error norms of the direct and indirect PSP approximations of T.

CONVERGENCE OF THE SENSITIVITY INDICES

FIGURE: Sensitivity indices S_{par} , S_{noise} and S_{mix} versus the number, N_W , of noise samples for different PSP levels. Also shown for comparison are the standard MC estimators (labeled MC). High noise: $\xi_1 \sim \mathscr{U}[0.95, 1.05]$, $\xi_2 \sim \mathscr{U}[0.02, 0.22]$ and $\nu = 0.2$. Low noise: $\xi_1 \sim \mathscr{U}[0.95, 1.05]$, $\xi_2 \sim \mathscr{U}[0.02, 0.03]$ and $\nu = 0.0$

Center for Uncertainty Quantification

イロト イ理ト イヨト イヨト

NON-INTRUSIVE PSP FOR SDES WITH PARAMETRIC UNCERTAINTY

NUMERICAL EXAMPLES

CONCLUSIONS

- Very efficient for large S_{par} or smooth QoIs with respect to ξ
- It is trivially implemented in parallel (see [4])
- It can be generalized to any sensitivity indices
- Extension to complex problems and acceleration to MLMC

Center for Uncertainty Quantification

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Extension to stochastic simulators (see [3])

R. H. Cameron and W. T. Martin.

The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals.

Annals of Mathematics, 48:385–392, 1947.

O. P. Le Maître and O. M. Knio.

Pc analysis of stochastic differential equations driven by wiener noise. *Reliability Engineering & System Safety*, 135:107–124, 2015.

M. Navarro, O. P. Le Maître, and O. M. Knio. Global sensitivity analysis in stochastic simulators of uncertain reaction networks.

The Journal of Chemical Physics (accepted), 2016.

M. Navarro, O. P. Le Maître, and O. M. Knio.

Non-intrusive polynomial chaos expansions for sensitivity analysis in stochastic differential equations.

SIAM/ASA Journal on Uncertainty Quantification (JUQ)-(Feb 2016 First submission, Minor revision August 2016 submitted revised version), 2016.

Center for Uncertainty Quantification

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@