Bayesian Sparse Polynomial Chaos Expansion

Qian Shao ${ }^{1,2}$, Thierry A. Mara ${ }^{2}$, Anis Younès ${ }^{3}$

${ }^{1}$ Wuhan University (China), ${ }^{2}$ University of La Reunion (France), ${ }^{3}$ IRD UMR LISAH, Montpellier (France)

8th SAMO Conference, Dec. 1 2016, Le Tampon (La Reunion)

ANOVA-HDMR

Sobol' (MMCE, 1993) proves that if:

$$
\text { 1. } y=f(\mathbf{x}) \in \mathcal{L}^{2}
$$

2. x uniformly distributed over unit hypercube \mathbb{I}_{n} then, $f(\mathbf{x})$ can be uniquely cast as,

$$
\begin{equation*}
f(\mathbf{x})=f_{0}+\sum_{i=1}^{n} f_{i}\left(x_{i}\right)+\sum_{j>i}^{n} f_{i j}\left(x_{i}, x_{j}\right)+\cdots+f_{1 \ldots n}\left(x_{1}, \ldots, x_{n}\right) \tag{1}
\end{equation*}
$$

by imposing that

$$
\begin{equation*}
\int_{0}^{1} f_{i_{1} \ldots i_{s}}\left(x_{i_{1}}, \ldots, x_{i_{s}}\right) \mathrm{d} x_{j}=0, \text { if } j \in\left(i_{1} \ldots i_{s}\right) \tag{2}
\end{equation*}
$$

Eq.(1) is called ANOVA-HDMR of $f(\mathbf{x})$ and leads to Sobol' sensitivity indices

What is PCE?

\mathcal{L}^{2} is a complete space $\Rightarrow \exists$ orthonormal bases $\left\{\psi_{\boldsymbol{\alpha}}(\mathbf{x}): \boldsymbol{\alpha} \in \mathbb{N}\right\}$ such that $\forall f(\mathbf{x}) \in \mathcal{L}^{2}$, one can write:

$$
\begin{equation*}
f(\mathbf{x})=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} \psi_{\boldsymbol{\alpha}}(\mathbf{x}) \tag{3}
\end{equation*}
$$

Polynomial chaoses are such orthonormal (orthogonal) bases:
Hermite polynomials, Legendre polynomials, Jacobi polynomials etc...

What is PCE?

\mathcal{L}^{2} is a complete space $\Rightarrow \exists$ orthonormal bases $\left\{\psi_{\boldsymbol{\alpha}}(\mathbf{x}): \boldsymbol{\alpha} \in \mathbb{N}\right\}$ such that $\forall f(\mathbf{x}) \in \mathcal{L}^{2}$, one can write:

$$
\begin{equation*}
f(\mathbf{x})=\sum_{\boldsymbol{\alpha} \in \mathbb{N}^{n}} c_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\mathbf{x}) \tag{3}
\end{equation*}
$$

Polynomial chaoses are such orthonormal (orthogonal) bases:
Hermite polynomials, Legendre polynomials, Jacobi polynomials etc...
Denoting $\psi_{\alpha}(x)$ the α-th degree one-dimensional basis element, the p-th degree multi-dimensional basis elements write:

$$
\psi_{\boldsymbol{\alpha}}(\mathbf{x})=\prod_{i=1}^{n} \psi_{\alpha_{i}}\left(x_{i}\right), \text { with } p=\sum_{i=1}^{n} \alpha_{i}
$$

N.B.: Computing Sobol' indices with PCE $=$ Computing the $c_{\alpha} \mathrm{s}$

Bayesian sparse PCE
In practice, only truncated and sparse PCEs are investigated:

$$
f(\mathbf{x}) \simeq \sum_{\boldsymbol{\alpha} \in \mathcal{A}} c_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\mathbf{x})=\boldsymbol{\psi}_{\mathcal{A}}^{\top}(\mathbf{x}) \mathbf{c}_{\mathcal{A}}
$$

where \mathcal{A} is a non-empty finite subset of \mathbb{N}^{n}

Bayesian sparse PCE
In practice, only truncated and sparse PCEs are investigated:

$$
f(\mathbf{x}) \simeq \sum_{\boldsymbol{\alpha} \in \mathcal{A}} c_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\mathbf{x})=\psi_{\mathcal{A}}^{T}(\mathbf{x}) \mathbf{c}_{\mathcal{A}}
$$

where \mathcal{A} is a non-empty finite subset of \mathbb{N}^{n}
Bayesian sparse PCE was introduced in Shao et al. (submitted to CMAME, 2016) to address the following issues:

- How to find the optimal subset \mathcal{A} ?
- What are the best polynomial degree p and level of interaction q, given the samples \mathbf{X} and \mathbf{y} ?
- How to assign uncertainty bounds to the Sobol' indices estimate?

Our Solution: PC coefficients estimated in a Bayesian framework + Model selection criterion

Model selection criterion: Kashyap information criterion (Kashyap, IEEE Trans., 1982)
KIC was defined in a Bayesian framework
$K I C_{\mathcal{A}}=-2 \ln \mathcal{P}\left(y \mid \mathcal{M}_{\mathcal{A}}, \tilde{\mathbf{c}}_{\mathcal{A}}\right)-2 \ln \mathcal{P}\left(\tilde{\mathbf{c}}_{\mathcal{A}} \mid \mathcal{M}_{\mathcal{A}}\right)-P_{\mathcal{A}} \ln (2 \pi)-\ln |\tilde{\mathbf{C}}|$
with
Likelihood: $y \mid \mathcal{M}_{\mathcal{A}}, \tilde{\mathbf{c}}_{\mathcal{A}}, \tilde{\sigma}_{\mathcal{A}}^{2} \sim \mathcal{N}\left(\Psi_{\mathcal{A}}^{\top} \tilde{\mathbf{c}}_{\mathcal{A}}, \tilde{\sigma}_{\mathcal{A}}^{2}\right)$
Prior: $\mathbf{c}_{\mathcal{A}} \mid \mathcal{M}_{\mathcal{A}} \sim \mathcal{N}(0, \mathbf{C})$
The choice of \mathbf{C} favours low-degree and low-interaction level terms The lower $K I C_{\mathcal{A}}$, the better the current sparse PCE $\mathcal{M}_{\mathcal{A}}$.
$\underline{\text { Posterior: } \mathbf{c}_{\mathcal{A}} \mid \mathcal{M}_{\mathcal{A}}, \mathbf{y}, \tilde{\sigma}_{\mathcal{A}}^{2} \sim \mathcal{N}\left(\tilde{\mathbf{c}}_{\mathcal{A}}, \tilde{\mathbf{C}}\right)}$
with

$$
\begin{gather*}
\tilde{\mathbf{c}}_{\mathcal{A}}=\frac{\tilde{\mathbf{C}} \boldsymbol{\Psi}_{\mathcal{A}}^{T} \mathbf{y}}{\tilde{\sigma}_{\mathcal{A}}^{2}} \tag{5}\\
\tilde{\mathbf{C}}=\left(\frac{\mathbf{\Psi}_{\mathcal{A}}^{T} \boldsymbol{\Psi}_{\mathcal{A}}}{\tilde{\sigma}_{\mathcal{A}}^{2}}+\mathbf{C}^{-1}\right)^{-1} \tag{6}\\
\tilde{\sigma}_{\mathcal{A}}^{2}=\frac{\left(\mathbf{y}-\mathbf{\Psi}_{\mathcal{A}} \tilde{\mathbf{c}}_{\mathcal{A}}\right)^{T}\left(\mathbf{y}-\mathbf{\Psi}_{\mathcal{A}} \tilde{\mathbf{c}}_{\mathcal{A}}\right)}{N} \tag{7}
\end{gather*}
$$

Algorithm

1. Initialization: Set initial polynomial degree p and interaction level q (e.g. $p=2,4, q=1,2$). Create the initial subset $\mathcal{A}=\left\{\boldsymbol{\alpha} \in \mathbb{N}^{n}: p_{\boldsymbol{\alpha}} \leq p, q_{\boldsymbol{\alpha}} \leq q\right\}$

Algorithm

1. Initialization: Set initial polynomial degree p and interaction level q (e.g. $p=2,4, q=1,2$). Create the initial subset $\mathcal{A}=\left\{\boldsymbol{\alpha} \in \mathbb{N}^{n}: p_{\boldsymbol{\alpha}} \leq p, q_{\alpha} \leq q\right\}$
2. Ranking via correlation coefficient: Set $P=\operatorname{Card}(\mathcal{A})$ and define the polynomials $\boldsymbol{\psi}=\left(\psi_{1}, \psi_{2}, \ldots, \psi_{P}\right)$ associated to \mathcal{A}. Then, compute the Pearson correlation coefficients:

$$
r_{j}=\frac{\mathbb{C O V}\left[y, \psi_{j}(\mathbf{x})\right]}{\sqrt{\mathbb{V}[y] \mathbb{V}\left[\psi_{j}(\mathbf{x})\right]}}
$$

Re-order the polynomial basis vector
$\hat{\psi}=\left(\hat{\psi}_{1}, \ldots, \hat{\psi}_{j}, \hat{\psi}_{j+1}, \ldots, \hat{\psi}_{P}\right)$ such that $r_{j}^{2} \geqslant r_{j+1}^{2}$
3. Ranking via partial correlation coefficient: Compute the partial correlation coefficients:

$$
r_{j \mid 1, \ldots, j-1}=\frac{\operatorname{COV}\left[y, \hat{\psi}_{j}(\mathbf{x}) \mid \hat{\psi}_{1}(\mathbf{x}), \ldots, \hat{\psi}_{j-1}(\mathbf{x})\right]}{\sqrt{\mathbb{V}\left[y \mid \hat{\psi}_{1}(\mathbf{x}), \ldots, \hat{\psi}_{j-1}(\mathbf{x})\right] \mathbb{V}\left[\hat{\psi}_{j}(\mathbf{x}) \mid \hat{\psi}_{1}(\mathbf{x}), \ldots, \hat{\psi}_{j-1}(\mathbf{x})\right]}}
$$

As previously re-order the PC basis elements $\tilde{\psi}=\left(\tilde{\psi}_{1}, \ldots, \tilde{\psi}_{j}, \tilde{\psi}_{j+1}, \ldots, \tilde{\psi}_{P}\right)$ such that $r_{j \mid 1, \ldots, j-1}^{2} \geqslant r_{j+1 \mid 1, \ldots, j}^{2}$. Set $\psi_{\mathcal{A}}=\tilde{\psi}_{0}$ and $k=0$.
3. Ranking via partial correlation coefficient: Compute the partial correlation coefficients:

$$
r_{j \mid 1, \ldots, j-1}=\frac{\mathbb{C O V}\left[y, \hat{\psi}_{j}(\mathbf{x}) \mid \hat{\psi}_{1}(\mathbf{x}), \ldots, \hat{\psi}_{j-1}(\mathbf{x})\right]}{\sqrt{\mathbb{V}\left[y \mid \hat{\psi}_{1}(\mathbf{x}), \ldots, \hat{\psi}_{j-1}(\mathbf{x})\right] \mathbb{V}\left[\hat{\psi}_{j}(\mathbf{x}) \mid \hat{\psi}_{1}(\mathbf{x}), \ldots, \hat{\psi}_{j-1}(\mathbf{x})\right]}}
$$

As previously re-order the PC basis elements $\tilde{\psi}=\left(\tilde{\psi}_{1}, \ldots, \tilde{\psi}_{j}, \tilde{\psi}_{j+1}, \ldots, \tilde{\psi}_{P}\right)$ such that $r_{j \mid 1, \ldots, j-1}^{2} \geqslant r_{j+1 \mid 1, \ldots, j}^{2}$. Set $\psi_{\mathcal{A}}=\tilde{\psi}_{0}$ and $k=0$.
4. Model selection: Set $k=k+1, \psi_{\mathcal{A}}=\left(\psi_{\mathcal{A}}, \tilde{\psi}_{k}\right)$. Evaluate Eqs.(4-7). From the KIC estimate decide whether to keep or to remove $\tilde{\psi}_{k}$ from $\psi_{\mathcal{A}}$. Resume until $k=P$.
5. Enrichment of \mathcal{A} or Stop: If \mathcal{A} contains elements of degree p or $(p-1)$ then set $p=p+2$, if it contains elements of interaction level q then set $q=q+1$. If p or q have been modified, then enrich \mathcal{A} and resume from 2, otherwise stop.

The Ishigami function (3 inputs)

The Ishigami Function: $y=\sin x_{1}+0.1 \sin ^{2} x_{2}+7 x_{3}^{4} \sin x_{1}$, $\overline{x_{i} \sim \mathcal{U}(-\pi, \pi)}$

$$
\begin{array}{ll}
S_{1}^{e x}=0.3139 & S_{1}^{P C E}=0.3086 \\
S_{2}^{e x}=0.4424 & S_{2}^{P C E}=0.4424 \\
S_{3}^{e x}=0 & S_{3}^{P C E}=0 \\
S_{12}^{e x}=0 & S_{12}^{P C E}=0 \quad N=64 \text { model runs } \\
S_{13}^{e x}=0.2437 & S_{13}^{P C E}=0.2364 \\
S_{23}^{e x}=0 & S_{23}^{P C E}=0 \\
S_{123}^{e x}=0 & S_{123}^{P C E}=0
\end{array}
$$

The Ishigami Function: $y=\sin x_{1}+0.1 \sin ^{2} x_{2}+7 x_{3}^{4} \sin x_{1}$, $\overline{x_{i} \sim \mathcal{U}(-\pi, \pi)}$

PCE structure | 0 | 0 | 0 | $\tilde{c}_{000}=3.4860$ |
| :---: | :---: | :---: | :---: |
| 0 | 4 | 0 | $\tilde{c}_{040}=-1.9865$ |
| 1 | 0 | 0 | $\tilde{c}_{100}=1.5015$ |
| 3 | 0 | 0 | $\tilde{c}_{300}=-1.4191$ |
| 0 | 6 | 0 | $\tilde{c}_{060}=1.3485$ |
| 1 | 0 | 2 | $\tilde{c}_{102}=1.3233$ |
| 3 | 0 | 2 | $\tilde{c}_{302}=-1.0833$ |
| 0 | 2 | 0 | $\tilde{c}_{020}=-0.5966$ |
| 1 | 0 | 4 | $\tilde{c}_{104}=0.5169$ |
| 0 | 8 | 0 | $\tilde{c}_{080}=-0.3676$ |
| 5 | 0 | 2 | $\tilde{c}_{502}=0.2295$ |
| 5 | 0 | 4 | $\tilde{c}_{504}=0.1998$ |
| 3 | 0 | 4 | $\tilde{c}_{304}=-0.1462$ |

Morris function (20 inputs)

Conclusion

- The algorithm is virtually non-parametric
- Any statistic estimated with the BSPCE is a random variable
- Credible intervals can be assigned to estimated sensitivity indices
- Computational time depends on N and complexity of $f(\mathbf{x})$

Future works

- Account for model uncertainty, i.e.: Assess $\left(\mathbf{c}_{\mathcal{A}}, \mathcal{M}_{\mathcal{A}}\right) \mid \mathbf{y}, \tilde{\sigma}_{\mathcal{A}}^{2}$ instead of $\mathbf{c}_{\mathcal{A}} \mid \mathcal{M}_{\mathcal{A}}, \mathbf{y}, \tilde{\sigma}_{\mathcal{A}}^{2}$
- Use BSPCE for optimal DOE

