

Bayesian Sparse Polynomial Chaos Expansion

Qian Shao^{1,2}, Thierry A. Mara², Anis Younès³

¹Wuhan University (China),²University of La Reunion (France),³IRD UMR LISAH, Montpellier (France)

8th SAMO Conference, Dec. 1 2016, Le Tampon (La Reunion)

ANOVA-HDMR Sobol' (MMCE, 1993) proves that if:

1. $y = f(\mathbf{x}) \in \mathcal{L}^2$

2. **x** uniformly distributed over unit hypercube \mathbb{I}_n then, $f(\mathbf{x})$ can be *uniquely* cast as,

$$f(\mathbf{x}) = f_0 + \sum_{i=1}^n f_i(x_i) + \sum_{j>i}^n f_{ij}(x_i, x_j) + \dots + f_{1\dots n}(x_1, \dots, x_n)$$
(1)

by imposing that

$$\int_0^1 f_{i_1...i_s}(x_{i_1},...,x_{i_s}) dx_j = 0, \text{ if } j \in (i_1...i_s)$$
(2)

Eq.(1) is called ANOVA-HDMR of $f(\mathbf{x})$ and leads to Sobol' sensitivity indices

What is PCE?

 \mathcal{L}^2 is a complete space $\Rightarrow \exists$ orthonormal bases $\{\psi_{\alpha}(\mathbf{x}) : \alpha \in \mathbb{N}\}$ such that $\forall f(\mathbf{x}) \in \mathcal{L}^2$, one can write:

$$f(\mathbf{x}) = \sum_{\boldsymbol{\alpha} \in \mathbb{N}^n} c_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\mathbf{x})$$
(3)

Polynomial chaoses are such orthonormal (orthogonal) bases: Hermite polynomials, Legendre polynomials, Jacobi polynomials etc...

What is PCE?

 \mathcal{L}^2 is a complete space $\Rightarrow \exists$ orthonormal bases $\{\psi_{\alpha}(\mathbf{x}) : \alpha \in \mathbb{N}\}$ such that $\forall f(\mathbf{x}) \in \mathcal{L}^2$, one can write:

$$f(\mathbf{x}) = \sum_{\boldsymbol{\alpha} \in \mathbb{N}^n} c_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\mathbf{x})$$
(3)

Polynomial chaoses are such orthonormal (orthogonal) bases:

Hermite polynomials, Legendre polynomials, Jacobi polynomials etc...

Denoting $\psi_{\alpha}(x)$ the α -th degree one-dimensional basis element, the *p*-th degree multi-dimensional basis elements write:

$$\psi_{\alpha}(\mathbf{x}) = \prod_{i=1}^{n} \psi_{\alpha_i}(x_i), \text{ with } p = \sum_{i=1}^{n} \alpha_i$$

N.B.: Computing Sobol' indices with $PCE = Computing the c_{\alpha}s$

Bayesian sparse PCE

In practice, only truncated and sparse PCEs are investigated:

$$f(\mathbf{x}) \simeq \sum_{oldsymbol{lpha} \in \mathcal{A}} c_{oldsymbol{lpha}} \psi_{oldsymbol{lpha}}(\mathbf{x}) = \psi_{\mathcal{A}}^{T}(\mathbf{x}) \mathbf{c}_{\mathcal{A}}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

where \mathcal{A} is a non-empty **finite** subset of \mathbb{N}^n

Bayesian sparse PCE

In practice, only truncated and sparse PCEs are investigated:

$$f(\mathbf{x}) \simeq \sum_{oldsymbol{lpha} \in \mathcal{A}} c_{oldsymbol{lpha}} \psi_{oldsymbol{lpha}}(\mathbf{x}) = \psi_{\mathcal{A}}^{T}(\mathbf{x}) \mathbf{c}_{\mathcal{A}}$$

where \mathcal{A} is a non-empty **finite** subset of \mathbb{N}^n

Bayesian sparse PCE was introduced in Shao et al. (submitted to CMAME, 2016) to address the following issues:

- How to find the optimal subset A?
- What are the best polynomial degree p and level of interaction q, given the samples X and y?
- How to assign uncertainty bounds to the Sobol' indices estimate?

<u>Our Solution</u>: PC coefficients estimated in a Bayesian framework + Model selection criterion

<u>Model selection criterion</u>: Kashyap information criterion (Kashyap, IEEE Trans., 1982) KIC was defined in a Bayesian framework

$$KIC_{\mathcal{A}} = -2 \ln \mathcal{P}(y|\mathcal{M}_{\mathcal{A}}, \tilde{\mathbf{c}}_{\mathcal{A}}) - 2 \ln \mathcal{P}(\tilde{\mathbf{c}}_{\mathcal{A}}|\mathcal{M}_{\mathcal{A}}) - P_{\mathcal{A}} \ln(2\pi) - \ln |\tilde{\mathbf{C}}|$$
(4)
with

Likelihood:
$$y|\mathcal{M}_{\mathcal{A}}, \tilde{\mathbf{c}}_{\mathcal{A}}, \tilde{\sigma}_{\mathcal{A}}^2 \sim \mathcal{N}(\boldsymbol{\Psi}_{\mathcal{A}}^{\mathsf{T}} \tilde{\mathbf{c}}_{\mathcal{A}}, \tilde{\sigma}_{\mathcal{A}}^2)$$

Prior: $\mathbf{c}_{\mathcal{A}}|\mathcal{M}_{\mathcal{A}} \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$

The choice of **C** favours low-degree and low-interaction level terms The lower KIC_A , the better the current sparse PCE \mathcal{M}_A .

$$\underline{\text{Posterior}}: \ \mathbf{c}_{\mathcal{A}} | \mathcal{M}_{\mathcal{A}}, \mathbf{y}, \tilde{\sigma}_{\mathcal{A}}^2 \sim \mathcal{N}(\mathbf{\tilde{c}}_{\mathcal{A}}, \mathbf{\tilde{C}})$$

with

$$\tilde{\mathbf{c}}_{\mathcal{A}} = \frac{\tilde{\mathbf{C}} \boldsymbol{\Psi}_{\mathcal{A}}^{T} \mathbf{y}}{\tilde{\sigma}_{\mathcal{A}}^{2}}$$
(5)

・ロト・< 差ト< 差ト・< 多への

$$\tilde{\mathbf{C}} = \left(\frac{\boldsymbol{\Psi}_{\mathcal{A}}^{T} \boldsymbol{\Psi}_{\mathcal{A}}}{\tilde{\sigma}_{\mathcal{A}}^{2}} + \mathbf{C}^{-1}\right)^{-1}$$
(6)

$$\tilde{\sigma}_{\mathcal{A}}^{2} = \frac{\left(\mathbf{y} - \Psi_{\mathcal{A}}\tilde{\mathbf{c}}_{\mathcal{A}}\right)^{T}\left(\mathbf{y} - \Psi_{\mathcal{A}}\tilde{\mathbf{c}}_{\mathcal{A}}\right)}{N}$$
(7)

Algorithm

 Initialization: Set initial polynomial degree p and interaction level q (e.g. p = 2, 4, q = 1, 2). Create the initial subset A = {α ∈ Nⁿ : p_α ≤ p, q_α ≤ q}

Algorithm

- Initialization: Set initial polynomial degree p and interaction level q (e.g. p = 2, 4, q = 1, 2). Create the initial subset A = {α ∈ Nⁿ : p_α ≤ p, q_α ≤ q}
- Ranking via correlation coefficient: Set P = Card (A) and define the polynomials ψ = (ψ₁, ψ₂,..., ψ_P) associated to A. Then, compute the Pearson correlation coefficients:

$$r_j = \frac{\mathbb{COV}[y, \psi_j(\mathbf{x})]}{\sqrt{\mathbb{V}[y]\mathbb{V}[\psi_j(\mathbf{x})]}}$$

Re-order the polynomial basis vector $\hat{\psi} = (\hat{\psi}_1, \dots, \hat{\psi}_j, \hat{\psi}_{j+1}, \dots, \hat{\psi}_P)$ such that $r_j^2 \ge r_{j+1}^2$

3. *Ranking via partial correlation coefficient:* Compute the partial correlation coefficients:

$$r_{j|1,\ldots,j-1} = \frac{\mathbb{COV}\left[y,\hat{\psi}_{j}(\mathbf{x})|\hat{\psi}_{1}(\mathbf{x}),\ldots,\hat{\psi}_{j-1}(\mathbf{x})\right]}{\sqrt{\mathbb{V}\left[y|\hat{\psi}_{1}(\mathbf{x}),\ldots,\hat{\psi}_{j-1}(\mathbf{x})\right]\mathbb{V}\left[\hat{\psi}_{j}(\mathbf{x})|\hat{\psi}_{1}(\mathbf{x}),\ldots,\hat{\psi}_{j-1}(\mathbf{x})\right]}}$$

As previously re-order the PC basis elements $\tilde{\psi} = (\tilde{\psi}_1, \dots, \tilde{\psi}_j, \tilde{\psi}_{j+1}, \dots, \tilde{\psi}_P)$ such that $r_{j|1,\dots,j-1}^2 \ge r_{j+1|1,\dots,j}^2$. Set $\psi_{\mathcal{A}} = \tilde{\psi}_0$ and k = 0.

3. *Ranking via partial correlation coefficient:* Compute the partial correlation coefficients:

$$r_{j|1,\ldots,j-1} = \frac{\mathbb{COV}\left[y,\hat{\psi}_{j}(\mathbf{x})|\hat{\psi}_{1}(\mathbf{x}),\ldots,\hat{\psi}_{j-1}(\mathbf{x})\right]}{\sqrt{\mathbb{V}\left[y|\hat{\psi}_{1}(\mathbf{x}),\ldots,\hat{\psi}_{j-1}(\mathbf{x})\right]\mathbb{V}\left[\hat{\psi}_{j}(\mathbf{x})|\hat{\psi}_{1}(\mathbf{x}),\ldots,\hat{\psi}_{j-1}(\mathbf{x})\right]}}$$

As previously re-order the PC basis elements $\tilde{\psi} = (\tilde{\psi}_1, \dots, \tilde{\psi}_j, \tilde{\psi}_{j+1}, \dots, \tilde{\psi}_P)$ such that $r_{j|1,\dots,j-1}^2 \ge r_{j+1|1,\dots,j}^2$. Set $\psi_{\mathcal{A}} = \tilde{\psi}_0$ and k = 0.

Model selection: Set k = k + 1, ψ_A = (ψ_A, ψ̃_k). Evaluate Eqs.(4-7). From the KIC estimate decide whether to keep or to remove ψ̃_k from ψ_A. Resume until k = P.

Enrichment of A or Stop: If A contains elements of degree p or (p − 1) then set p = p + 2, if it contains elements of interaction level q then set q = q + 1. If p or q have been modified, then enrich A and resume from 2, otherwise stop.

The Ishigami function (3 inputs)

▲ロ▶ ▲圖▶ ▲圖▶ ▲圖▶ 三国 - のQで

The Ishigami Function: $y = \sin x_1 + 0.1 \sin^2 x_2 + 7x_3^4 \sin x_1$, $x_i \sim \mathcal{U}(-\pi, \pi)$

$S_1^{ex} = 0.3139$	$S_1^{PCE} = 0.3086$	
$S_2^{ex} = 0.4424$	$S_2^{PCE} = 0.4424$	
$S_3^{ex}=0$	$S_{3}^{PCE} = 0$	
$S_{12}^{ex} = 0$	$S_{12}^{PCE} = 0$	N = 64 model runs
$S_{13}^{ex} = 0.2437$	<i>S</i> ^{<i>PCE</i>} ₁₃ =0.2364	
$S_{23}^{ex} = 0$	$S_{23}^{PCE} = 0$	
$S_{123}^{ex} = 0$	<i>S</i> ^{<i>PCE</i>} ₁₂₃ =0	

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

The Ishigami Function: $y = \sin x_1 + 0.1 \sin^2 x_2 + 7x_3^4 \sin x_1$, $x_i \sim \mathcal{U}(-\pi, \pi)$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > = = の < @

Morris function (20 inputs)

◆ロ ▶ ◆屈 ▶ ◆臣 ▶ ◆臣 ● ● ● ●

Conclusion

- The algorithm is virtually non-parametric
- Any statistic estimated with the BSPCE is a random variable
- Credible intervals can be assigned to estimated sensitivity indices
- Computational time depends on N and complexity of $f(\mathbf{x})$

Future works

► Account for model uncertainty, i.e.: Assess (c_A, M_A) |y, õ²_A instead of c_A|M_A, y, õ²_A

Use BSPCE for optimal DOE