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ANOVA-HDMR
Sobol’ (MMCE, 1993) proves that if:

1. y = f (x) ∈ L2

2. x uniformly distributed over unit hypercube In

then, f (x) can be uniquely cast as,

f (x) = f0 +
n

∑

i=1

fi(xi ) +
n

∑

j>i

fij(xi , xj ) + · · ·+ f1...n(x1, . . . , xn) (1)

by imposing that

∫ 1

0
fi1...is (xi1 , . . . , xis )dxj = 0, if j ∈ (i1 . . . is) (2)

Eq.(1) is called ANOVA-HDMR of f (x) and leads to Sobol’
sensitivity indices



What is PCE?
L2 is a complete space ⇒ ∃ orthonormal bases {ψα(x) : α ∈ N}
such that ∀f (x) ∈ L2, one can write:

f (x) =
∑

α∈Nn

cαψα(x) (3)

Polynomial chaoses are such orthonormal (orthogonal) bases:

Hermite polynomials, Legendre polynomials, Jacobi polynomials
etc...



What is PCE?
L2 is a complete space ⇒ ∃ orthonormal bases {ψα(x) : α ∈ N}
such that ∀f (x) ∈ L2, one can write:

f (x) =
∑

α∈Nn

cαψα(x) (3)

Polynomial chaoses are such orthonormal (orthogonal) bases:

Hermite polynomials, Legendre polynomials, Jacobi polynomials
etc...
Denoting ψα(x) the α-th degree one-dimensional basis element,
the p-th degree multi-dimensional basis elements write:

ψα(x) =

n
∏

i=1

ψαi
(xi ), with p =

n
∑

i=1

αi

N.B.: Computing Sobol’ indices with PCE = Computing the cαs



Bayesian sparse PCE
In practice, only truncated and sparse PCEs are investigated:

f (x) ≃
∑

α∈A

cαψα(x) = ψ
T
A(x)cA

where A is a non-empty finite subset of Nn



Bayesian sparse PCE
In practice, only truncated and sparse PCEs are investigated:

f (x) ≃
∑

α∈A

cαψα(x) = ψ
T
A(x)cA

where A is a non-empty finite subset of Nn

Bayesian sparse PCE was introduced in Shao et al. (submitted to
CMAME, 2016) to address the following issues:

◮ How to find the optimal subset A?

◮ What are the best polynomial degree p and level of
interaction q, given the samples X and y?

◮ How to assign uncertainty bounds to the Sobol’ indices
estimate?

Our Solution: PC coefficients estimated in a Bayesian framework
+ Model selection criterion



Model selection criterion: Kashyap information criterion (Kashyap,
IEEE Trans., 1982)
KIC was defined in a Bayesian framework

KICA = −2 lnP(y |MA, c̃A)− 2 lnP(c̃A|MA)−PA ln(2π)− ln |C̃|
(4)

with
Likelihood: y |MA, c̃A, σ̃

2
A ∼ N (ΨT

Ac̃A, σ̃
2
A)

Prior: cA|MA ∼ N (0,C)

The choice of C favours low-degree and low-interaction level terms
The lower KICA, the better the current sparse PCE MA.



Posterior: cA|MA, y, σ̃
2
A ∼ N (c̃A, C̃)

with

c̃A =
C̃ΨT

Ay

σ̃2A
(5)

C̃ =

(

Ψ
T
AΨA

σ̃2A
+ C−1

)−1

(6)

σ̃2A =
(y −ΨAc̃A)

T (y −ΨAc̃A)

N
(7)



Algorithm

1. Initialization: Set initial polynomial degree p and interaction
level q (e.g. p = 2, 4, q = 1, 2). Create the initial subset
A = {α ∈ N

n : pα ≤ p, qα ≤ q}



Algorithm

1. Initialization: Set initial polynomial degree p and interaction
level q (e.g. p = 2, 4, q = 1, 2). Create the initial subset
A = {α ∈ N

n : pα ≤ p, qα ≤ q}

2. Ranking via correlation coefficient: Set P = Card (A) and
define the polynomials ψ = (ψ1, ψ2, . . . , ψP) associated to A.
Then, compute the Pearson correlation coefficients:

rj =
COV [y , ψj(x)]
√

V[y ]V[ψj(x)]

Re-order the polynomial basis vector
ψ̂ = (ψ̂1, . . . , ψ̂j , ψ̂j+1, . . . , ψ̂P ) such that r2j > r2j+1



3. Ranking via partial correlation coefficient: Compute the
partial correlation coefficients:

rj|1,...,j−1 =
COV

[

y , ψ̂j(x)|ψ̂1(x), . . . , ψ̂j−1(x)
]

√

V

[

y |ψ̂1(x), . . . , ψ̂j−1(x)
]

V

[

ψ̂j(x)|ψ̂1(x), . . . , ψ̂j−1(x)
]

As previously re-order the PC basis elements
ψ̃ = (ψ̃1, . . . , ψ̃j , ψ̃j+1, . . . , ψ̃P ) such that
r2
j |1,...,j−1 > r2

j+1|1,...,j . Set ψA = ψ̃0 and k = 0.
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COV

[

y , ψ̂j(x)|ψ̂1(x), . . . , ψ̂j−1(x)
]

√

V

[

y |ψ̂1(x), . . . , ψ̂j−1(x)
]

V

[

ψ̂j(x)|ψ̂1(x), . . . , ψ̂j−1(x)
]

As previously re-order the PC basis elements
ψ̃ = (ψ̃1, . . . , ψ̃j , ψ̃j+1, . . . , ψ̃P ) such that
r2
j |1,...,j−1 > r2

j+1|1,...,j . Set ψA = ψ̃0 and k = 0.

4. Model selection: Set k = k + 1, ψA = (ψA, ψ̃k). Evaluate
Eqs.(4-7). From the KIC estimate decide whether to keep or
to remove ψ̃k from ψA. Resume until k = P .



5. Enrichment of A or Stop: If A contains elements of degree p

or (p − 1) then set p = p + 2, if it contains elements of
interaction level q then set q = q + 1. If p or q have been
modified, then enrich A and resume from 2, otherwise stop.



The Ishigami function (3 inputs)



The Ishigami Function: y = sin x1 + 0.1 sin2 x2 + 7x43 sin x1,
xi ∼ U(−π, π)

Sex
1 =0.3139 SPCE

1 =0.3086

Sex
2 =0.4424 SPCE

2 =0.4424

Sex
3 =0 SPCE

3 =0

Sex
12=0 SPCE

12 =0

Sex
13=0.2437 SPCE

13 =0.2364

Sex
23=0 SPCE

23 =0

Sex
123=0 SPCE

123 =0

N = 64 model runs



The Ishigami Function: y = sin x1 + 0.1 sin2 x2 + 7x43 sin x1,
xi ∼ U(−π, π)

PCE structure

0 0 0 c̃000=3.4860
0 4 0 c̃040=-1.9865
1 0 0 c̃100=1.5015
3 0 0 c̃300=-1.4191
0 6 0 c̃060=1.3485
1 0 2 c̃102=1.3233
3 0 2 c̃302=-1.0833
0 2 0 c̃020=-0.5966
1 0 4 c̃104=0.5169
0 8 0 c̃080=-0.3676
5 0 2 c̃502=0.2295
5 0 4 c̃504=0.1998
3 0 4 c̃304=-0.1462

for N = 64 model runs



Morris function (20 inputs)



Conclusion

◮ The algorithm is virtually non-parametric

◮ Any statistic estimated with the BSPCE is a random variable

◮ Credible intervals can be assigned to estimated sensitivity
indices

◮ Computational time depends on N and complexity of f (x)

Future works

◮ Account for model uncertainty, i.e.: Assess (cA,MA) |y, σ̃
2
A

instead of cA|MA, y, σ̃
2
A

◮ Use BSPCE for optimal DOE
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