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ANOVA-HDMR
Sobol’" (MMCE, 1993) proves that if:

1. y=f(x) e L?

2. x uniformly distributed over unit hypercube I,

then, f(x) can be uniquely cast as,

f(x) = f‘b —+ Z f;'(X;) + Z f,j(X,',X_,‘) +---+ fl...n(X1> s >Xn) (1)
i=1

J>i

by imposing that

1
/ (s i )dxg = 0, i j € (i ... is) 2)
0

Eq.(1) is called ANOVA-HDMR of f(x) and leads to Sobol’
sensitivity indices



What is PCE?

L2 is a complete space = 3 orthonormal bases {1o(x) : « € N}
such that Vf(x) € £2, one can write:

f(x) = Y catalx) (3)
aeNn

Polynomial chaoses are such orthonormal (orthogonal) bases:

Hermite polynomials, Legendre polynomials, Jacobi polynomials
etc...
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L2 is a complete space = 3 orthonormal bases {1o(x) : « € N}
such that Vf(x) € £2, one can write:

f(x) = Y catalx) (3)
aeNn

Polynomial chaoses are such orthonormal (orthogonal) bases:

Hermite polynomials, Legendre polynomials, Jacobi polynomials
etc...

Denoting 1, (x) the a-th degree one-dimensional basis element,
the p-th degree multi-dimensional basis elements write:

ba(¥) =[] too; (i), with p=>"a;
i=1 i=1

N.B.: Computing Sobol’ indices with PCE = Computing the c,s



Bayesian sparse PCE
In practice, only truncated and sparse PCEs are investigated:

F(x) ~ > cata(x) =i(x)ca

acA

where A is a non-empty finite subset of N”
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In practice, only truncated and sparse PCEs are investigated:

f(x) = Z Cawa(x) = /l/)ll—(x)cA

acA

where A is a non-empty finite subset of N”

Bayesian sparse PCE was introduced in Shao et al. (submitted to
CMAME, 2016) to address the following issues:
» How to find the optimal subset A?

» What are the best polynomial degree p and level of
interaction g, given the samples X and y?

» How to assign uncertainty bounds to the Sobol’ indices
estimate?

Our Solution: PC coefficients estimated in a Bayesian framework
-+ Model selection criterion



Model selection criterion: Kashyap information criterion (Kashyap,
IEEE Trans., 1982)
KIC was defined in a Bayesian framework

KIC4 = —2InP(y|M4,€4) — 2InP(E4|M4) — PaIn(27) —In|C|
(4)

with

Likelihood: y|M4,€4,5% ~ N (¥ €4,56%)

Prior: CA|M.A ~ N(Ov C)

The choice of C favours low-degree and low-interaction level terms
The lower KIC 4, the better the current sparse PCE M 4.



Posterior: € 4| M.y, 5% ~ N (€4, C)

with -
B Cv
eq=—5Y (5)
o4
T -1
é- (‘1’4;“ n c—1> (6)
o
A

52— - \IIAEA)L(y — W4EN) )




Algorithm

1. Initialization: Set initial polynomial degree p and interaction
level g (e.g. p=2,4, g =1,2). Create the initial subset
A={aeN":py <p,ga <q}



Algorithm
1. Initialization: Set initial polynomial degree p and interaction
level g (e.g. p=2,4, g =1,2). Create the initial subset
A={aeN":py <p,ga <q}
2. Ranking via correlation coefficient: Set P = Card (.A) and

define the polynomials ¥ = (1,2, ..., ¥p) associated to A.
Then, compute the Pearson correlation coefficients:

_ COV]y,¢;(x)]

T VG

Re-order the polynomial basis vector
Y = (Y1,...,90j,Vj+1,...,¢p) such that rj2 > rj2+1



3. Ranking via partial correlation coefficient: Compute the
partial correlation coefficients:

COV [y, BN (x), - Iy 1 ()]
V7 D00, Gy GO] ¥ [0, -4

As previously re-order the PC basis elements

1'02 (wlv s >wjij+ly .. 7¢P) such that

M1 Zr J+1\1 . Set 14 = 1 and k = 0.



3. Ranking via partial correlation coefficient: Compute the
partial correlation coefficients:

) COV [y, BN (x), - Iy 1 ()]
V7 D00, Gy GO] ¥ [0, -4

As previously re-order the PC basis elements
P = (V... ,wj,%“, ..,p) such that
rﬁle =T J+1\1 . Set 94 = g and k = 0.

4. Model selection: Set k=k+1, 19y = (¢A,¢k). Evaluate
Eqgs.(4-7). From the KIC estimate decide whether to keep or
to remove v, from 1) 4. Resume until k = P.



5. Enrichment of A or Stop: If A contains elements of degree p
or (p — 1) then set p = p + 2, if it contains elements of
interaction level g then set g = g+ 1. If p or g have been
modified, then enrich A and resume from 2, otherwise stop.
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The Ishigami function (3 inputs)
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The Ishigami Function: y = sinx; + 0.1sin® xo + 7x§1 sin xq,
xi ~U(—m, )

S$§¥=0.3139 SP“F=0.3086

$§¥=0.4424 SPCE=0.4424

5§=0 SPE=0

S&=0 SEFE=0 N = 64 model runs
S§=0.2437 S[E=0.2364

585=0 SEE=0

ex __ PCE __
5123_0 5123 -



The Ishigami Function: y =sinx; + 0.1 sin®xp + 7x§1 sin xq,

xi ~U(—m, )

PCE structure

WO oI O O WO WwWH OO
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€000=3.4860
Coa0=-1.9865
¢100=1.5015
C300=-1.4191
Cos0=1.3485
C102=1.3233
C302=-1.0833
Co20=-0.5966
C104=0.5169
Coso=-0.3676
C502=0.2295
C504=0.1998
C304=-0.1462

for N = 64 model runs
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Morris function (20 inputs)
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Conclusion

The algorithm is virtually non-parametric
Any statistic estimated with the BSPCE is a random variable

Credible intervals can be assigned to estimated sensitivity
indices

Computational time depends on N and complexity of f(x)

Future works

Account for model uncertainty, i.e.: Assess (c4, M4) |y,&f4
instead of cA|MA,y,&f4

Use BSPCE for optimal DOE
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