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The setting: The Forward Problem (UASA)

Given p(x) find p(y) + Sensitivity Indices



The setting: The Inverse Problem (Statistical Calibration)

Given p(y|x) + p(x) find p(x|y)



Bayesian inference
Bayesian inference relies on the axiom of conditional probability:
p(y, x) = p(y|x)p(x) = p(x|y)p(y)
and writes:

p(x|y) ∝ p(y|x)p(x) (1)
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Bayesian inference relies on the axiom of conditional probability:
p(y, x) = p(y|x)p(x) = p(x|y)p(y)
and writes:

p(x|y) ∝ p(y|x)p(x) (1)

The most probable (best) solution is,

XMAP = argmax
x

{p(y|x)p(x)} (2)

called the maximum a posteriori estimate (MAP).



MCMC sampling
Evaluating XMAP can be computationally fast but:

◮ can be hampered by the presence of local optima

◮ do not provide the posterior pdf of the inputs (except under
Laplace approximation)



MCMC sampling
Evaluating XMAP can be computationally fast but:

◮ can be hampered by the presence of local optima

◮ do not provide the posterior pdf of the inputs (except under
Laplace approximation)

Markov chains Monte Carlo (MCMC) can sample x from (1). It is
a rejection/acceptance sampling technique that explores the
probable region of the input space.

But MCMC remains computationally demanding.

The maximal conditional posterior distribution (MCPD) approach
of Mara et al. (2015) - cheaper alternative approach.



MCPD sampling
The maximal conditional posterior distribution (MCPD) is defined
as:

P(xi ) = max
x
∼i

(p(x
∼i |y, xi ))× p(xi |y) (3)

First introduced in Mara et al. (AWR, 2015) for statistical
calibration of computer models as an alternative to MCMC.



MCPD sampling
The maximal conditional posterior distribution (MCPD) is defined
as:

P(xi ) = max
x
∼i

(p(x
∼i |y, xi ))× p(xi |y) (3)

First introduced in Mara et al. (AWR, 2015) for statistical
calibration of computer models as an alternative to MCMC.

Definition: P(xi ) represents the distribution of xi knowing that the
remaining inputs x

∼i maximize the conditional posterior pdf.

Consequence: Any draw Xk drawn from p(x) is such that,
(Xki , p(Xk |y)) is located beneath P(xi ), ∀i = 1, . . . , n.





















Drainage experiment: MCMC vs MCPD

Obj: From the observed data, find the hydraulic parameters:
Ks , ωr , ωs , α, n, λ)



Drainage experiment: MCMC vs MCPD
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MCMC: 8x8000 model runs, CTU=8000
MCPD: 7500 runs, CTU = 2000



MCPD sampler versus MCMC sampler

Pros of MCPD:

◮ Computationally cheap

◮ Easy to use (free available MATLAB programs)

◮ Assessment of the MCPDs can be parallelized (cost
independent of the dimension n)

Cons of MCPD:

◮ Likelihood dependent (p(x|y) must have finite modes), so far,
only implemented for Gaussian likelihood

◮ May need to modify M to compute the Jacobian (for
efficiency purposes)

◮ Few probabilistic draws provided (while MCMC provides large
stochastic draws)
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