

A New Bayesian Approach for Statistical Calibration of Computer Models

Frédérick Delay¹, Thierry A. Mara², Anis Younès^{1,3}

¹LHyGeS, UMR CNRS 7517 (France),²University of La Reunion (France),³IRD UMR LISAH, Montpellier (France)

8th SAMO Conference, Dec. 2 2016, Le Tampon (La Reunion)

The setting: The Forward Problem (UASA)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Given $p(\mathbf{x})$ find p(y) + Sensitivity Indices

The setting: The Inverse Problem (Statistical Calibration)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Given $p(\mathbf{y}|\mathbf{x}) + p(\mathbf{x})$ find $p(\mathbf{x}|\mathbf{y})$

Bayesian inference

Bayesian inference relies on the axiom of conditional probability: $p(\mathbf{y}, \mathbf{x}) = p(\mathbf{y}|\mathbf{x})p(\mathbf{x}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y})$ and writes:

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$$
 (1)

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Bayesian inference

Bayesian inference relies on the axiom of conditional probability: $p(\mathbf{y}, \mathbf{x}) = p(\mathbf{y}|\mathbf{x})p(\mathbf{x}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y})$ and writes:

$$p(\mathbf{x}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$$
 (1)

The most probable (best) solution is,

$$\mathbf{X}_{MAP} = \operatorname*{argmax}_{\mathbf{x}} \left\{ p(\mathbf{y}|\mathbf{x}) p(\mathbf{x}) \right\}$$
(2)

called the maximum a posteriori estimate (MAP).

MCMC sampling

Evaluating X_{MAP} can be computationally fast but:

- can be hampered by the presence of local optima
- do not provide the posterior pdf of the inputs (except under Laplace approximation)

MCMC sampling

Evaluating X_{MAP} can be computationally fast but:

- can be hampered by the presence of local optima
- do not provide the posterior pdf of the inputs (except under Laplace approximation)

Markov chains Monte Carlo (MCMC) can sample x from (1). It is a rejection/acceptance sampling technique that explores the probable region of the input space.

But MCMC remains computationally demanding.

The maximal conditional posterior distribution (MCPD) approach of Mara et al. (2015) - cheaper alternative approach.

MCPD sampling

The maximal conditional posterior distribution (MCPD) is defined as:

$$\mathcal{P}(x_i) = \max_{\mathbf{x}_{\sim i}} \left(p(\mathbf{x}_{\sim i} | \mathbf{y}, x_i) \right) \times p(x_i | \mathbf{y})$$
(3)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

First introduced in Mara et al. (AWR, 2015) for statistical calibration of computer models as an alternative to MCMC.

MCPD sampling

The maximal conditional posterior distribution (MCPD) is defined as:

$$\mathcal{P}(x_i) = \max_{\mathbf{x}_{\sim i}} \left(p(\mathbf{x}_{\sim i} | \mathbf{y}, x_i) \right) \times p(x_i | \mathbf{y})$$
(3)

First introduced in Mara et al. (AWR, 2015) for statistical calibration of computer models as an alternative to MCMC.

<u>Definition</u>: $\mathcal{P}(x_i)$ represents the distribution of x_i knowing that the remaining inputs $\mathbf{x}_{\sim i}$ maximize the conditional posterior pdf.

Consequence: Any draw \mathbf{X}_k drawn from $p(\mathbf{x})$ is such that, $(\overline{X_{ki}, p(\mathbf{X}_k | \mathbf{y})})$ is located beneath $\mathcal{P}(x_i), \forall i = 1, ..., n$.

- < ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

- * ロ > * 個 > * 注 > * 注 > - 注 - の Q ()

- ▲ ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ● 今 Q @

- ▲日 ▲ 御 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の < @

- イロト イヨト イヨト - ヨー のへ

Drainage experiment: MCMC vs MCPD

Obj: From the observed data, find the hydraulic parameters: $K_s, \omega_r, \omega_s, \alpha, n, \lambda$)

Drainage experiment: MCMC vs MCPD

MCMC: 8x8000 model runs, CTU=8000 MCPD: 7500 runs, CTU = 2000

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで

Pros of MCPD:

- Computationally cheap
- Easy to use (free available MATLAB programs)
- Assessment of the MCPDs can be parallelized (cost independent of the dimension n)

Cons of MCPD:

- Likelihood dependent (p(x|y) must have finite modes), so far, only implemented for Gaussian likelihood
- ► May need to modify *M* to compute the Jacobian (for efficiency purposes)
- Few probabilistic draws provided (while MCMC provides large stochastic draws)