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Some typical industrial problems of inversion at EDF (1/3)

Water management

Finding the value (or a relevant range of values) for the Strickler-Manning
friction coefficient Ks

for a given (penalized) water flow Q and a known river geometry

using a hydraulic computer model involving fluid mechanics equations

using observations of water level H
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Well-posedness Well-posedness



References

Some typical industrial problems of inversion at EDF (2/3)

Energy consumption management

Finding the value (or a relevant range of values) for the influent parameters of
thermal models

(albedo, thermal bridge factor, convective coefficient..)

using measures of injected electric power

BESTLAB experimental measurement station (EDF Lab)
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Some typical industrial problems of inversion at EDF (3/3)

Ageing management

Finding the value (or a relevant range of values) for the localization of crack
primings that may appear on concrete cooling towers of nuclear plants

Most sensitive parts of a cooling tower [6]
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General framework

Assume to have observations yn = (y∗i )i∈{1,...,n} of Y ∗ such that

Y ∗ = Y + ε, (1)

Y = g(X ) (2)

where

Y lives in a q−dimensional space

X is a p−dimensional random variable of unknown distribution F
ε is a (experimental or/and process) “noise" with known distribution fε

g is some deterministic function (computer model) from Rp to Rq

Inversion (in a broad sense).

Inferring on F from the knowledge of yn and fε
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Stochastic inversion

1 Bayesian calibration [8, 4] [epistemic uncertainty framework]

X random with prior π ⇒ F ≡ π(.|yn, fε)
posterior computation reached by MCMC

2 Stochastic inversion [3] [random uncertainty framework]

the form of F is fixed and does not “degenerate" to x0 when n→∞
usually F is assumed to be a normal or mixture of normal
distribution parameterized by θ (finite dimension)
frequentist inference on θ [3, 1]
Bayesian inference on θ [5]

mixture of random and epistemic uncertainties

Both approaches possibly involve meta-modelling if g is a time consuming
black box [4, 5] (e.g., kriging, polynomial chaos...)
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Stochastic inversion: a typical Bayesian algorithm for posterior simulation

Assume Fθ ≡ N (µ, Γ) with θ = (µ, Γ)

1 Reconstitute missing sample X1,i+1, . . . ,Xn,i+1 given y∗1 , . . . , y
∗
n and

(µi , Γi )

2 Sample µi+1 given Γi and X1,i+1, . . . ,Xn,i+1

3 Sample Γi+1 given µi+1 and X1,i+1, . . . ,Xn,i+1
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Well-posedness conditions and identifiability in stochastic inversion problems

Hadamard’s well-posedness : the solution F̂ should exist, be unique and be
continuously dependent on observations according to a
reasonable topology

g linear or linearizable, ie. ∃ a linear operator Hg such
that

Y ∗ ' HgX + ε′

⇒ a low value of the condition number [2]

κ(Hg ) = ‖H−1
g ‖ · ‖Hg‖ =

|λmax|
|λmin|

≥ 1

for ‖ · ‖ = L2 norm and Hg symmetric

identifiability : in similar situations (g linear or close to linearity) [3]

Hg must be injective (rank(H) = p)
dimension requirement: p ≤ nq

Well-posedness Well-posedness
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A new well-posedness principle

Predictive sensitivity analysis principle

Independently of the availability of y∗, imagine that the problem is solved
and F is known

Any sensitivity study, for instance based on Sobol’ indices [7], should
highlight that the main source of uncertainty, explaining the variations of
Y ∗, is X and not ε

Property often “checked" a posteriori in practice

Should be thought as a prior constraint for the inversion problem

Could improve prior elicitation of θ in a Bayesian framework

Could improve the (usually stochastic) search for θ in a wide parameter
space (e.g., covariance matrices space)
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Two possible definitions

Definition

Let (SX ,Sε) be the first-order Sobol indices quantifying the uncertainty on Y ∗

explained by X and ε, respectively. The stochastic inversion problem is said to
be well-posed in Sobol’ sense if

SX > Sε. (3)

Definition

Denote E(X ) the entropy of X . The stochastic inversion problem is said to be
well-posed in the entropic sense if

E(E (Y ∗ | X )) > E(E (Y ∗ | ε)). (4)

Many others can be made, based on usual sensitivity analysis criteria ...
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Example 1

Assume the simple linear model:

Y ∗ = aTX + ε (5)

with

X ∈ Rp ∼ F ≡ N (µ, Γ) where θ = (µ, Γ)

a ∈ Rp

ε ∈ Rp ∼ N (0, σ2Ip)

Proposition

The stochastic inversion problem is well-posed in Sobol’ and entropic sense if
and only if

aTΓa > σ2

Well-posedness Well-posedness
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Example 1 (inversion)

In a Bayesian framework, assuming

X ∼ N (µ, (k − 1)σ2) (missing observations)

with µ, σ2 known and the following Jeffreys-type prior

k ∼ 1
k

Adding of not adding the prior constraint gives two different posterior
distributions :

k| . . . ∼ IG

(
n/2,

n∑
i=1

(y∗i − aµ)2/(2σ2)

)

and (most reliably)

k| . . . ∼ IG

(
n/2,

n∑
i=1

(y∗i − aµ)2/(2σ2)

)
1{k>1+1/a2}

Well-posedness Well-posedness
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Example 2

Assume that g is differentiable in the neighborhood of
E(X ) := (E(X1), . . . ,E(Xp))

Assume X ∼ N (µ, Γ), ε ∈ Rp ∼ N (0, σ2Ip)

Denote DgE(X ) :=

(
∂g

∂x1
(E(X1)), ...

∂g

∂xp
(E(Xp))

)
.

Proposition

The stochastic inversion problem is well-posed in Sobol’ sense if and only if

DgT
E(X )ΓDgE(X ) > σ2.

Well-posedness Well-posedness
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Being more general: well-posedness in Fisher’s sense

Sobol’ well-posedness is limited to reflect how input uncertainty from X or ε is
transmitted to the observed output Y ∗

Ubiquitous to describe how information is transmitted: quantities of
information (as entropy) ⇔ measures of eliminated uncertainty

A parametric measure of information seems appropriate to be used for defining
well-posedness ⇔ most usual = Fisher information

Well-posedness Well-posedness
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General principle (1/2)

Denote by Ig(X )(θ) and IY∗(θ) the Fisher information carried respectively by
g(X ) and Y ∗ about θ

(a) Since the impact of ε is to degrade information, then it is expected /
desired that

Ig(X )(θ) > IY∗(θ)

where A > B, for two squared matrices A and B, means that A− B is a
positive-definite matrix

⇒ always true for Gaussian linear problems

Well-posedness Well-posedness
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General principle (2/2)

(b) Most of information on θ in Y ∗ is transmitted from g(X )

⇒ The difference

Ig(X )(θ)− IY∗(θ) = measure of the information loss because of the noise ε

should not be greater than a fraction (1− 1/c)Ig(X )(θ) where c > 1

It follows that the prior constraint is

Ig(X )(θ) > IY∗(θ) >
1
c
Ig(X )(θ)

An intuitive value for c is 2.... but further arguments can be used to assess
another value for c
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An argument to give a value to c (1/3)

Consider Gaussian linear problems such that g : x 7→ Hx and

X ∈ Rp ∼ N (µ, Γ), where Γ = τ2Ip

ε ∈ Rq ∼ N (0,Σ)

Proposition

Assume HHT and Σ commute. A sufficient condition for Fisher’s
well-posedness is√c − max

1≤i≤q

(
λHHT

i

)
min

1≤i≤q

(
λHHT

i

)
 τ2 ≥

max
1≤i≤q

(
λΣ
i

)
min

1≤i≤q

(
λHHT

i

) .
where{

λZ
i

}
1≤i≤q

= eigenvalues of Z
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An argument to give a value to c (2/3)

Denote Ψ := Σ−1/2HHTΣ−1/2

Theorem

A sufficient condition for Fisher’s well-posedness is

(
√
c − 1)τ2 >

1
min

1≤i≤q

{
λΨ
i

}
A necessary condition for Fisher’s well-posedness is

√
c > 1 +

1
τ2 max

1≤i≤q

{
λΨ
i

}

Well-posedness Well-posedness
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An argument to give a value to c (3/3)

Link with Sobol’ / entropy.

τ2 max
1≤i≤q

{
λΨ
i

}
can be interpreted as the signal over noise ratio for the

model to invert

Reasonable to expect τ2 max
1≤i≤q

{
λΨ
i

}
≥ 1

⇒
√
c ≥ 2 ⇒ c ≥ 4

If c = 4 and q = 1 the sufficient condition is strictly equivalent to Sobol’
/ entropic conditions

Remark. The sufficient condition can be easily extended when Γ 6= τ2Ip
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Linearizable models

We could assume that

g(x) = g(x0) + Jg (x0) (x − x0) + o(‖ x − x0 ‖)

where Jg (x0) denotes the Jacobian matrix of g in x0

Under the assumption of a negligible linearization error, the linearization turns
out to consider

Y ∗x0 = Hx0X + ε. (6)

where Hx0 := Jg (x0) and Y ∗x0 := Y ∗ − g(x0) + Hx0x0. Former propositions can
be easily adapted

Warning

Main drawbacks of the linearization method

the approximation error is assumed to be negligible and is not really taken
into account

the choice of the linearization point

may induce large variations in the value of the Fisher information
previous conditions can be not fully respected with high probability
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References

Choosing the linearization point

1 Choosing the best point as the one for which the associated linearized
model preserves the maximum amount of information about θ

max
x0∈Rp

{
Ig(x0)+Hx0 (X−x0)(θ)

}
(too costly)

2 Choosing the approximate linear, well-posed model as the closest to the
nonlinear model in the mean-square error sense

min
H∈Rq×p

u∈Rq

{
E ‖ Y ∗ − (HX + u) ‖2

}
s.t. IY∗(θ) >

1
c
IHX+u(θ)

it does not longer require the differentiability of g

Well-posedness Well-posedness
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A third approach

Denote Ỹ the best linear approximation of Y in distributional sense, where
H ∈ Rq×p and u ∈ Rq

The optimization problem to solve is the following one

H∗ = argmin
H∈Rq,p

DKL(q, pH)

where
DKL (P‖Q) is the Kullback-Leibler divergence
q denotes the distribution of the random variable g(X ) and pH the
distribution of HX

Proposition

The best linear, well-posed approximation of Y is given by

Y = HX + ε, s.t HΓHT = Eg(X )(xx
T )

and
(
√
c − 1) min

1≤i≤q

{
λΓ
i

}
>

1
min

1≤i≤q

{
λΨ
i

} ,
where Ψ := Σ−1/2HHTΣ−1/2
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Main (temporary) conclusions

Our postulate

Previously to use real observations, sensitivity analysis is a way of
understanding what can be a “well-posed" problem

Any (or many) sensitivity indice(s) has an interpretation in Hadamard’s
sense (and conversely)

This interpretation can be used to produce useful prior constraints in
inversion problems

Hadamard’s condition is mainly qualitative: the condition number should be
"close" to 1

Rule of thumb in practice : κ(Hg ) = 10k with k the number of lost digits of
accuracy

This new formalization of well-posedness is more suitable to sensitivity analysts

Linear or linearized models usually offer less contrast than nonlinear models ⇒
a prior constraint for linear models should be “approximately" respected too for
nonlinear models
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Work in progress

How to apply in practice? Monte Carlo-based computation + design of
experiments

Modifying the way of sampling candidate covariance matrices in assessment
procedures (typically, Monte Carlo Markov Chains) on the examples listed
above: ⇒ faster convergence

The restriction of the covariance matrix space due to inserting this new
condition of well-posedness is likely to determine new invariance prior measures
(Jeffreys-type) on Γ with good posterior coverage properties

Useful for conducting objective Bayesian stochastic inversion

Going from Sobol’ to recently generalized indices (e.g. HSIC insides [Da Veiga
2015]): ⇒ Building better interpretation of what is a well-posed inversion
problem
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