# Comparison of Latin Hypercube and Quasi Monte Carlo Sampling Techniques

Sergei Kucherenko<sup>2</sup>, Andrea Saltelli<sup>1</sup>, Daniel Albrecht<sup>3</sup>

<sup>1</sup>SVT - University of Bergen (UIB) and ICTA -Universitat Autonoma de Barcelona (UAB) <sup>2</sup>Imperial College London, UK <sup>3</sup>The European Commission, Joint Research Centre, ISPRA(VA), ITALY

## Outline

- Monte Carlo integration methods
- Latin Hypercube sampling design
- Quasi Monte Carlo methods. Sobol' sequences and their properties
- Comparison of sample distributions generated by different techniques
- Global Sensitivity Analysis and Effective dimensions
- **Comparison results**

### Monte Carlo integration methods

$$I[f] = \int_{H^n} f(\vec{x}) d\vec{x}$$
  
see as an expectation:  $I[f] = E[f(\vec{x})]$   
Monte Carlo :  $I_N[f] = \frac{1}{N} \sum_{i=1}^N f(\vec{z}_i)$   
 $\{\vec{z}_i\}$  - is a sequence of random points in  $H^n$   
Error:  $\varepsilon = |I[f] - I_N[f]|$   
 $\varepsilon_N = (E(\varepsilon^2))^{1/2} = \frac{\sigma(f)}{N^{1/2}} \rightarrow$ 

Convergence does not depent on dimensionality but it is slow

Improve MC convergence by decreasing  $\sigma$  (*f*) Use variance reduction techniques: antithetic variables; control variates; stratified sampling  $\rightarrow$  LHS sampling

# Latin Hypercube sampling



Latin Hypercube sampling is a type of Stratified Sampling.

To sample N points in d-dimensions

Divide each dimension in N equal intervals  $=> N^n$  subcubes.

Take one point in each of the subcubes so that being projected to lower dimensions points do not overlap

### Latin Hypercube sampling

 $\{\pi_k\}, k = 1,...,n$  - independent random permutations of  $\{1,...,N\}$  each uniformly distributed over all N! possible permutations

LHS coordinates: 
$$x_i^k = \frac{\pi_k(i) - 1 + U_i^k}{N}, i = 1, ..., N, k = 1, ..., n$$
  
 $U_i^k \approx U(0, 1)$ 

LHS is built by superimposing well stratified one-dimensional samples.

It cannot be expected to provide good uniformity properties in a n-dimensional unit hypercube.

## **Deficiencies of LHS sampling**

(a)

(b)



1) Space is badly explored (a)

2) Possible correlation between variables (b)

- 3) Points can not be sampled sequentially
- => Not suited for integration

#### Discrepancy. Quasi Monte Carlo.

Discrepancy is a measure of deviation from uniformity: Definitions:  $Q(\vec{y}) \in H^n$ ,  $Q(\vec{y}) = [0, y_1) \times [0, y_2) \times ... \times [0, y_n)$ , m(Q) – volume of Q

$$D_N^* = \sup_{Q(\vec{y})\in H^n} \left| \frac{N_{Q(\vec{y})}}{N} - m(Q) \right|$$

Random sequences:  $D_N^* \rightarrow (\ln \ln N) / N^{1/2} \sim 1 / N^{1/2}$ 

 $D_N^* \le c(d) \frac{(\ln N)^n}{N} - \text{Low discrepancy sequences (LDS)}$ Convergence:  $\varepsilon_{QMC} = |I[f] - I_N[f]| \le V(f) D_N^*$ ,  $\varepsilon_{QMC} = \frac{O(\ln N)^n}{N}$ Assymptotically  $\varepsilon_{QMC} \sim O(1/N) \rightarrow \text{much higher than}$  $\varepsilon_{MC} \sim O(1/\sqrt{N})$ 

### QMC. Sobol' sequences

Convergence:  $\varepsilon = \frac{O(\ln N)^n}{N}$  - for all LDS For Sobol' LDS:  $\varepsilon = \frac{O(\ln N)^{n-1}}{N}$ , if  $N = 2^k$ , k - integer

Sobol' LDS:

- 1. Best uniformity of distribution as N goes to infinity.
- 2. Good distribution for fairly small initial sets.
- 3. A very fast computational algorithm.

"Preponderance of the experimental evidence amassed to date points to Sobol' sequences as the most effective quasi-Monte Carlo method for application in financial engineering."

Paul Glasserman, Monte Carlo Methods in Financial Engineering, Springer, 2003

### Sobol LDS. Property A and Property A'

A low-discrepancy sequence is said to satisfy Property A if for any binary segment (not an arbitrary subset) of the *n*-dimensional sequence of length  $2^n$  there is exactly one point in each  $2^n$  hyper-octant that results from subdividing the unit hypercube along each of its length extensions into half.

A low-discrepancy sequence is said to satisfy Property A' if for any binary segment (not an arbitrary subset) of the *n*-dimensional sequence of length 4<sup>*n*</sup> there is exactly one point in each 4<sup>*n*</sup> hyper-octant that results from subdividing the unit hypercube along each of its length extensions into four equal parts.



### Distributions of 4 points in two dimensions



### Distributions of 16 points in two dimensions



# Comparison of Discrepancy I. Low Dimensions



Use standard MC and , LHS generators Sobol' sequence generator: SobolSeq: Sobol' sequences satisfy Properties A and A' www.broda.co.uk

QMC in low dimensions shows much smaller discrepancy than MC and LHS

### **ANOVA decomposition and Sensitivity Indices**

Consider a model x is a vector of input variables f(x) is integrable

$$Y = f(x)$$
$$x = (x_1, x_2, ..., x_k)$$
$$0 \le x_i \le 1$$

ANOVA decomposition:

$$Y = f(x) = f_0 + \sum_{i=1}^k f_i(x_i) + \sum_i \sum_{j>i} f_{ij}(x_i, x_j) + \dots + f_{1,2,\dots,k}(x_1, x_2, \dots, x_k),$$
  
$$\int_0^1 f_{i_1 \dots i_s}(x_{i_1}, \dots, x_{i_s}) dx_{i_k} = 0, \ \forall k, \ 1 \le k \le s$$

Variance decomposition:

$$\sigma^2 = \sum_{i} \sigma_i^2 + \sum_{i,j} \sigma_{ij}^2 + \ldots \sigma_{1,2,\ldots,n}^2$$

Sobol' SI: 
$$1 = \sum_{i=1}^{k} S_i + \sum_{i < j} S_{ij} + \sum_{i < j < l} S_{ijl} + \dots + S_{1,2,\dots,k}$$

### Sobol' Sensitivity Indices (SI)

• Definition:  

$$S_{i_1...i_s} = \sigma_{i_1...i_s}^2 / \sigma^2$$

$$\sigma_{i_1...i_s}^2 = \int_0^1 f_{i_1...i_s}^2 (x_{i_1},...,x_{i_s}) dx_{i_1},...,x_{i_s} - partial variances$$

$$\sigma^2 = \int_0^1 (f(x) - f_0)^2 dx - total variance$$

Sensitivity indices for subsets of variables: x = (y, z)

$$\sigma_y^2 = \sum_{s=1}^m \sum_{(i_1 < \dots < i_s) \in \mathbf{K}} \sigma_{i_1,\dots,i_s}^2$$

Total variance for a subset:

$$\left(\sigma_{y}^{tot}\right)^{2} = \sigma^{2} - \sigma_{z}^{2}$$

Corresponding global sensitivity indices:

$$S_y = \sigma_y^2 / \sigma^2, \qquad S_y^{tot} = (\sigma_y^{tot})^2 / \sigma^2.$$

### Effective dimensions

Let |u| be a cardinality of a set of variables *u*.

The effective dimension of f(x) in the superposition sense is the smallest integer  $d_s$  such that

 $\sum_{0 < |u| < d_S} S_u \ge (1 - \varepsilon), \ \varepsilon << 1$ 

It means that f(x) is almost a sum of  $d_s$ -dimensional functions.

The function f(x) has effective dimension in the truncation sense  $d_T$  if

$$\sum_{u \subseteq \{1,2,\dots,d_T\}} S_u \ge (1-\varepsilon), \ \varepsilon << 1$$

Important property:  $d_S \leq d_T$ 

**Example:** 
$$f(x) = \sum_{i=1}^{n} x_i \rightarrow d_s = 1, \ d_T = n$$

# **Classification of functions**

Type A. Variables are not equally important  $S_y^T$  $>> \frac{S_z^T}{\longrightarrow} \leftrightarrow d_T << n$  $n_{v}$  $n_{_7}$ 

# Type B,C. Variables are equally important

$$S_i \approx S_j \leftrightarrow d_T \approx n$$

Type B. Dominant low order indices n

$$\sum_{i=1}^{n} S_i \approx 1 \leftrightarrow d_S \ll n$$

Type C. Dominant higher order indices

n

$$\sum_{i=1}^{n} S_i << 1 \leftrightarrow d_S \approx n$$

### When LHS is more effective than MC?

ANOVA: 
$$f(x) = f_0 + \sum_i f_i(x_i) + r(x)$$

r(x) – high order interactions terms

LHS: 
$$E(\varepsilon_{LHS}^2) = \frac{1}{N} \int_{H^n} [r(x)]^2 dx + O(\frac{1}{N})$$
 (Stein, 1987)  
MC:  $E(\varepsilon_{MC}^2) = \frac{1}{N} \sum_i \int_{H^n} [f_i(x_i)]^2 dx + \frac{1}{N} \int_{H^n} [r(x)]^2 dx + O(\frac{1}{N})$   
if  $\int_{H^n} [r(x)]^2 dx$  is small  $\Leftrightarrow d_s$  (Type B functions )

 $\rightarrow \quad E(\varepsilon_{LHS}^2) < E(\varepsilon_{MC}^2)$ 

### **Classification of functions**

| Function | Description    | Relationship                                                                                     | $d_T$       | $d_{S}$     | QMC is    | LHS is    |
|----------|----------------|--------------------------------------------------------------------------------------------------|-------------|-------------|-----------|-----------|
| type     |                | between                                                                                          |             |             | more      | more      |
|          |                | $S_i$ and $S_i^{tot}$                                                                            |             |             | efficient | efficient |
|          |                |                                                                                                  |             |             | than MC   | than MC   |
| A        | A few          |                                                                                                  | << <i>n</i> | << <i>n</i> | Yes       | No        |
|          | dominant       | $S_{v}^{tot}/n_{v} >> S_{z}^{to}/n_{z}$                                                          |             |             |           |           |
|          | variables      |                                                                                                  |             |             |           |           |
| В        | No             |                                                                                                  | $\approx n$ | << <i>n</i> | Yes       | Yes       |
|          | unimportant    |                                                                                                  |             |             |           |           |
|          | subsets; only  | $S_i \approx S_j, \forall i, j$ $S_i / S_i^{tot} \approx 1, \forall i$                           |             |             |           |           |
|          | low-order      |                                                                                                  |             |             |           |           |
|          | interaction    |                                                                                                  |             |             |           |           |
|          | terms are      |                                                                                                  |             |             |           |           |
|          | present        |                                                                                                  |             |             |           |           |
| C        | No             |                                                                                                  | $\approx n$ | $\approx n$ | No        | No        |
|          | unimportant    |                                                                                                  |             |             |           |           |
|          | subsets; high- | $\begin{vmatrix} S_i \approx S_j, \forall i, j \\ S_i / S_i^{tot} << 1, \forall i \end{vmatrix}$ |             |             |           |           |
|          | order          |                                                                                                  |             |             |           |           |
|          | interaction    |                                                                                                  |             |             |           |           |
|          | terms are      |                                                                                                  |             |             |           |           |
|          | present        |                                                                                                  |             |             |           |           |

# How to monitor convergence of MC, LHS and QMC calculations ?

The root mean square error is defined as

$$\varepsilon = \left(\frac{1}{K}\sum_{k=1}^{K}(I_d - I_N^k)^2\right)^{1/2}$$

*K* is a number of independent runs

MC and LHS: all runs should be statistically independent ( use a different seed point ).

QMC: for each run a different part of the Sobol' LDS was used ( start from a different index number ).

The root mean square error is approximated by the formula

 $cN^{-\alpha}$ ,  $0 < \alpha < 1$ MC:  $\alpha \approx 0.5$ QMC:  $\alpha \le 1$ LHS:  $\alpha$ ?

19



# Integration error. Type A

$$\frac{S_y^T}{n_y} >> \frac{S_z^T}{n_z} \leftrightarrow d_T << n$$

$$\varepsilon = \left(\frac{1}{K} \sum_{k=1}^{K} (I - I_N^k)^2\right)^{1/2}$$
$$\varepsilon \sim N^{-\alpha}, \ 0 < \alpha < 1$$

| Index | Function                                                                                          | Dim n | Slope<br>MC | Slope<br>QMC | Slope<br>LHS |
|-------|---------------------------------------------------------------------------------------------------|-------|-------------|--------------|--------------|
| 1A    | $\sum_{i=1}^n (-1)^i \prod_{j=1}^i x_j$                                                           | 360   | 0.50        | 0.94         | 0.52         |
| 2A    | $\prod_{i=1}^{n} \frac{ 4x_i - 2  + a_i}{1 + a_i}$ $a_1 = a_2 = 0$ $a_3 = \dots = a_{100} = 6.52$ | 100   | 0.49        | 0.65         | 0.50         |

### Integration error vs. N. Type B

#### Dominant low order indices





$$f(x) = \prod_{i=1}^{n} \frac{n - x_i}{n - 0.5}$$
$$n = 360$$





(a)



# Integration error. Type B functions

Dominant low order indices

 $\sum_{i=1}^n S_i \approx 1 \leftrightarrow d_S << n$ 

| Index | Function                                                        | Dim n | Slope<br>MC | Slope<br>QMC | Slope<br>LHS |
|-------|-----------------------------------------------------------------|-------|-------------|--------------|--------------|
| 1B    | $\prod_{i=1}^{n} \frac{n-x_i}{n-0.5}$                           | 30    | 0.52        | 0.96         | 0.69         |
| 2B    | $\left(1+\frac{1}{n}\right)^n \prod_{i=1}^n \sqrt[n]{x_i}$      | 30    | 0.50        | 0.87         | 0.62         |
| 3B    | $\prod_{i=1}^{n} \frac{ 4x_i - 2  + a_i}{1 + a_i}$ $a_i = 6.52$ | 30    | 0.51        | 0.85         | 0.55         |

# The integration error vs. N. Type C Dominant higher order indices: $\sum_{i=1}^{n} S_i \ll 1 \leftrightarrow d_s \approx n$



(a)

(b)

$$f(x) = \prod_{i=1}^{n} \frac{|4x_i - 2| + a_i}{1 + a_i}, a_i = 0$$
  

$$\to \prod_{i=1}^{n} |4x_i - 2|$$
  

$$n = 10$$



$$f(x) = (1/2)^{1/n} \prod_{i=1}^{n} x_i$$
  
n = 10

# Integration error for type C functions

Dominant higher order indices

$$\sum_{i=1}^{n} S_i << 1 \leftrightarrow d_S \approx n$$

| Index | Function                   | Dim <i>n</i> | Slope | Slope | Slope |
|-------|----------------------------|--------------|-------|-------|-------|
|       |                            |              | MC    | QMC   | LHS   |
| 1C    | $\prod_{i=1}^n  4x_i - 2 $ | 10           | 0.47  | 0.64  | 0.50  |
| 2C    | $(2)^n \prod_{i=1}^n x_i$  | 10           | 0.49  | 0.68  | 0.51  |

# The integration error vs. N. Function 1A



QMC: convergence is monotonic MC and LHS: convergence curves are oscillating

QMC is 30 times faster than MC and LHS

LHS: it is not possible to incrementally add a new point while keeping the old LHS design

### Summary

Sobol' sequences possess additional uniformity properties which MC and LHS techniques do not have (Properties A and A').

Comparison of  $L_2$  discrepancies shows that the QMC method has the lowest discrepancy in low dimensions ( up to 20).

QMC method outperforms MC and LHS for types A and B functions (problems with low effective dimensions)

### Summary

LHS never outperforms QMC. LHS method outperforms MC only for type B functions.

QMC remains the most efficient method among the three techniques for non-uniform distributions

QMC should be preferred as

- better theoretical properties (A, A')
- More important variables can be associated to leftmost columns Sequences can be extended (automated stopping rules)
- Sequences can be replicated exactly