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Monte Carlo integration methods
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Improve MC convergence by decreasing ( )

Use variance reduction techniques:

antithetic variables; control variates;

on dimensionality but it is slow

stratified sampling  LHS sampling
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Latin Hypercube sampling

Latin Hypercube sampling is a type of  Stratified Sampling.

To sample N points in d-dimensions

Divide each dimension in N equal intervals => Nn subcubes.

Take one point in each of the subcubes so that being projected to 

lower dimensions points do not overlap



.

55

Latin Hypercube sampling
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Deficiencies of LHS sampling

1) Space is badly explored (a)

2) Possible correlation between variables (b)

3) Points can not be sampled sequentially 

=> Not suited for integration



.

7

Discrepancy. Quasi Monte Carlo. 
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QMC. Sobol’ sequences
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Convergence: for all LDS
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For Sobol' LDS: , if 2 , integer

Sobol' LDS:

1. Best uniformity of distribution as N goes to infinity.
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3. A very fast computational algorithm.

"Preponderance of the experimental evidence amassed to date 

points to Sobol' sequences as the most effective quasi-Monte Carlo 

method for application in financial engineering."

Paul Glasserman, Monte Carlo Methods in Financial Engineering, 

Springer, 2003
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Sobol LDS. Property A and Property A’

A low-discrepancy sequence is said to satisfy Property A if for any binary segment 

(not an arbitrary subset) of the n-dimensional sequence of length 2n there is 

exactly one point in each 2n hyper-octant that results from subdividing the unit 

hypercube along each of its length extensions into half.

A low-discrepancy sequence is said to satisfy Property A’ if for any binary segment 

(not an arbitrary subset) of the n-dimensional sequence of length 4n there is 

exactly one point in each 4n hyper-octant that results from subdividing the unit 

hypercube along each of its length extensions into four equal parts.

Property A Property A’



.

10

Distributions of 4 points in two dimensions

MC ->

LHS ->

Sobol’  ->

Property A

No

No

Yes



.

11

Distributions of 16 points in two dimensions

MC ->

LHS ->

Sobol’  ->

Property A’

No

No

Yes
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Comparison of Discrepancy I.

Low Dimensions

Use standard MC and ,

LHS generators

Sobol' sequence generator:

SobolSeq: 

Sobol' sequences satisfy

Properties A and A’

www.broda.co.uk

Result:

QMC in low dimensions shows 

much smaller discrepancy than 

MC and LHS
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Consider a model

x is a vector of input variables

f(x) is integrable
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Variance decomposition:

Sobol’ SI:

ANOVA decomposition and Sensitivity Indices
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Sobol’ Sensitivity Indices (SI)

 Definition:

- partial variances

- total variance

 Sensitivity indices for subsets of variables:

Total variance for a subset:

 Corresponding global sensitivity indices:
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Effective dimensions
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Type B. 

Dominant low order indices
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Classification of functions

Type B,C. Variables are 

equally important
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When LHS is more effective than MC ?
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Classification of functions

Function 

type

Description Relationship 

between

Si and Si
tot

dT dS QMC is 

more 

efficient 

than MC

LHS is 

more 

efficient 

than MC

A A few 

dominant 

variables

Sy
tot/ny >> Sz

to / nz

<< n << n Yes No

B No 

unimportant 

subsets; only 

low-order 

interaction 

terms are 

present

Si ≈ Sj,  i, j

Si / Si
tot ≈ 1,  i

≈ n << n Yes Yes

C No 

unimportant 

subsets;  high-

order 

interaction 

terms are 

present

Si ≈ Sj,  i, j

Si / Si
tot << 1,  i

≈ n ≈ n No No
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How to monitor convergence of 

MC, LHS and QMC calculations ?

MC:    0.5

QMC: 1

LHS: ?
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The root mean square error is defined as 

K is a number of independent runs

MC and LHS: all runs should be statistically independent ( use a 

different seed point ).

QMC: for each run a different part of the Sobol' LDS was used ( 

start from a different index number ).

The root mean square error is approximated by the formula
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Integration error vs. N. Type A
(a) f(x) = ∑n

j=1(-1)ii
j=1 xj,  n = 360, (b) f(x) = s

i=1 │4xi-2│/(1+a i),  n = 100
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Integration error. Type A

Index Function Dim n Slope 

MC

Slope 

QMC

Slope 

LHS

1A 360 0.50 0.94 0.52

2A

a1 = a2 = 0

a3 = … = a100 = 6.52

100 0.49 0.65 0.50
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Integration error vs. N. Type B

Dominant low order indices
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Integration error. Type B functions

Dominant low order indices
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Index Function Dim n Slope 

MC

Slope 

QMC

Slope 

LHS

1B 30 0.52 0.96 0.69

2B 30 0.50 0.87 0.62

3B

ai = 6.52

30 0.51 0.85 0.55
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The integration error vs. N. Type C
Dominant higher order indices: 
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Integration error for type C functions

Dominant higher order indices
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Index Function  Dim n Slope 

MC

Slope 

QMC

Slope 

LHS

1C 10 0.47 0.64 0.50

2C 10 0.49 0.68 0.51
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The integration error vs. N. Function 1A

QMC: convergence is monotonic

MC and LHS: convergence curves are oscillating

QMC is 30 times faster than MC and LHS

LHS: it is not possible to incrementally add a new point while keeping 

the old LHS design
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Summary

Sobol’ sequences possess additional uniformity properties which MC and 

LHS techniques do not have (Properties A and A’).

Comparison of L2 discrepancies shows that the QMC method has the 

lowest discrepancy in low dimensions ( up to 20).

QMC method outperforms MC and LHS for types A and B functions 

(problems with low effective dimensions)
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Summary

LHS never outperforms QMC. LHS method outperforms MC only for type 

B functions. 

QMC remains the most efficient method among the three techniques for 

non-uniform distributions

QMC should be preferred as 

better theoretical properties (A, A’)

More important variables can be associated to leftmost columns

Sequences can be extended (automated stopping rules)

Sequences can be replicated exactly 


