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Stochastic differential equations (SDEs) play an important role in modeling problems in many
different fields. These models are particularly challenging since, in addition to their inherent random
dynamics, they are often uncertain due to incomplete knowledge of the parameters and input data,
etc. As a result, the model outputs are also uncertain with a variability depending on both the
inherent noise and the model uncertainties. The aim of the present work is then to develop efficient
techniques to carry out a global sensitivity analysis (GSA) in uncertain SDE driven by Wiener noise.
The objective is to quantify the respective contributions, to the total variance of the SDE solution, of
the Wiener noise and other sources of parametric uncertainty.

The simplest approach to perform such decomposition of the variance is through a Monte Carlo
sampling or any of its variants [2]. Although the implementation of these methods is straightforward,
neither MC nor any of its improved versions exploit the potential smoothness with respect to un-
certain parameter of the model output, to accelerate the convergence of the sensitivity indices. We
propose to use functional approximations (Polynomial Chaos) to account for the dependences on the
uncertain model parameters of the random trajectories, as introduced in [1]. Under the assumption
that the driving Wiener noise and the uncertain parameters are independent random quantities, the
PC expansion can be exploited to perform an orthogonal decomposition of the variance, separating
contributions from the uncertain parameters, the Wiener noise, and a coupled contribution. The
approach in [1] relied on Galerkin methods to compute the stochastic PC modes of the solution and
on the Sobol-Hoeffding decomposition to define the sensitivity indices [5], althought others methods
such us Fourier amplitude sensitivity test (FAST) can be applied [3]. In the present work, we propose
an extension to non-intrusive or sampling methods for the determination of the PC approximation,
along with techniques to perform a GSA of any functional of the SDE solution. In more details, we
rely here on a non-intrusive pseudo-spectral projection (PSP) method, over a sparse-grid of parameter
points, for the PC modes computation. The GSA of QoIs derived from SDE solution is illustrated in
Figure 1. Two different QoIs are considered: the case of path integral which inherit the smoothness of
the original SDE solution (see Left) and the case of exit time which exhibit non smooth dependences
with the uncertain parameters (see Right).

For the first case, the non-intrusive projection of the QoI can be directly performed, and the
sensitivity indices can be computed from the random PC modes. Numerical experiments show that
the standard error (SE) of the sensitivity indices for the direct approach can be much less than for
the SE of the classical MC estimation [4] of the sensitivity indices, when the same number of Wiener
noise samples are used. This improvement in the SE comes at the cost of having to solve as many
SDEs as sparse grid points in the parameter space; so the reduction of the variance in the sensitivity
indices estimators may not necessarily translates into an improvement of the overall computational
efficiency, in particular in the case of complex parametric dependencies demanding large sparse grids.
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Figure 1: Ornstein-Uhlenbeck (OU) process with uncertain parameters: dX(W, ξ) = (Q1(ξ) −
X(W, ξ))dt + (νX(W, ξ) + 1)Q2(ξ)dW , X(t = 0) = 0, with parameters Q1 ∼ U ([0.95, 1.15]),
Q2 ∼ U ([0.02, 0.22]) and ν = 0.2. Left: Integral over time of X (smooth QoI). Right: Exit time
of X at level 1(non-smooth QoI).

For the second case, the QoI (exit time) does not inherit the smoothness of the SDE solution
with respect to the uncertain parameters, and its direct non-intrusive projection has a very slow
convergence. Therefore, we introduce the idea of indirect non-intrusive projection which consists in,
first, constructing the approximation of the SDE solution and, second, sampling this approximation to
generate conditional samples of the QoI. This approach yields a lower standard error than the classical
MC estimator when the same number of noise samples is used, as can be seen in Figure 2. However,
the cost of the improvement might again be significant for some problems. Our numerical experiments
show that for problems with a low noise effects and low number of sparse grid points, the indirect
projection is more efficient that direct MC, providing lower SE for the same cost. In addition, for
the indirect projection gives access to a richer information than direct MC sampling (for instance all
sensitivity indices can be computed without requiring more noise samples).
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Figure 2: Standard errors in the sensitivity indices of the exit time, as a function of the number of
samples NW , for the indirect PSP and standard MC approaches. The solid lines correspond to the
multiplicative noise OU process with large noise, while the dashed lines correspond to the low additive
noise case.
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