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1 Background

Building design is challenged by ever-increasirguieements towards energy demand, building castiar
climate, and sustainability. The industry seekshmeés$ to support the multi-actor decision-makingrythe
early design stage, which is characterized by anneous design space that is difficult to model, explore. To
tackle this issue, we propose to: a) describe #hniability of design parameters using uniform dlitions, b)
model the design space by a Monte Carlo analysig ugiasi-random sampling, and c) explore the satan
results using Monte Carlo Filtering [1]. An inteti@e parallel coordinate plot (PCP) combined witstbgrams
allows for real-time exploration of the simulatioesults by the multiple stakeholders (e.g. buddimvner,
architects, and engineers).

Early building design typically involves many dasigarameters and multiple, opposing objectives
(outputs). Thus, there is a need for Factor Fix#j@f the least significant parameters prior toltiractor
meetings. Still, the PCP may contain an overwhemiomber of coordinates that makes it difficult to
immediately see which coordinates have been affdnyen certain filter /criterion (figure 1). Thitugly aims to
see if SA using two-sample Kolmogorov-Smirnov {&$-2-SA) can be applied to meet these challerig8s.
2-SA seems relevant since the MCF (or Factor Mapmplits the simulations inteehavioralandnon-
behavioralrealizations [2] and MCF can be applied to moeeéth multiple outputs (and inputs).
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Figure 1: PCP shows input/output relationships evhistograms show input/output distributions. Fiteave been applied to output coordinates.

2 Methods

First, we consider sensitivity related to a singiéput Glass-floor-94). Suppose that we have performed N
QMC realizations of the model output. The lattespfit in J = 10 subsamples of equal probabilitg. (€ach
subsample is approximately of size N/J). For eatisample, MCF compares the behavioral input sa(tipde
produced realizations of the output in the curserttsample) with the non-behavioral input sample (th
complementary subsample). This comparison is chaig with the two-sample Kolomogorov-Smirnov
statisticsDj, j=1,..., J and i=1,...,d with d standing for the nanbf input parameters (1). For each input, an
average of this statistic over the number of sulpdasris computed (2). We test this approach bygudifierent
sizes of subsamples J (10, 4, and 2) and diffe@miple sizes N (200, 2.000, and 5.000).
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As a test, we first investigate how sensitivity s@@s from KS-2-SA compares with other sensitigitplysis
methods, i.e. Pearson’s R, Spearm@n'SRC, SRRC, Morris, and SDP (state dependent gaear8A) [3]. To
compare the SA techniques, we convert the sertgitiveasures into percentages (despite that MomMges a
measure for the total sensitivity whereas SRC dhdrs estimate sensitivity from first order effeatdy).
Secondly, we try to extend this method (of remosngsamples) to three outputs in order to enaldtoFa
Fixing and Factor Prioritization, i.e. rank inpirigshe PCP according to their influence on thedloatputs
simultaneously.

For this case study, we use a shoebox shapedméaldzruilding with 3.000 mz floor area. A quaseatly
state simulation model based on ISO 13790 is usedaluate energy demand and thermal comfort (medsis
the number of hours in the years during which tleamtemperature exceeds 26 °C). Daylight avaitgldi
assessed by th@lass-floor-% Uniform input distributions are assigned to impat design variables and the

! The variableGlass-floor-%describes the amount of glazing in the buildifgsades measured as the percentage of glazingeréeated floor area.
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combination of these constitute our “design spa€hls design space is represented by up to 5.00@téMdarlo
simulations (samples) using Sobol’s (L.w discrepancy sequences.

3 Findings
To evaluate the significance sample size N andasupke size J, we consider the “user-defined” ouglats-
floor-%, which only depends on three variabMéndow frame factor, Window-%, Sou#dmdwWindow-%,

North. Thus, the remaining five variable inputs havenilmence. To validate the results, we compare with
sensitivity percentages obtained from SRC. Fromr&@.A, it seems that using subsample size ofiswioe
best approach since the SA measures for the nhremfal inputs are close to zero and to SRC measiigure
2.B shows how the sensitivity measure seems toawepwith increasing sampling size N.

To compare different SA methods, we choose thé lieesr outpuh>26°C which has a R&c= 0.729
wherea€nergy demandndGlass-floor-%have values of 0.988 and 0.996. Figure 2.C shbatshe sensitivity
measures from KS-2 are similar to those obtaineah fother methods. Only the SDP approach does nichma
the others.

Finally, we estimate sensitivity with respect tbthfee variables using KS-2. We added 7 variablai
with small variations. Each output distributiorsiit into two subsamples which results in 8 combons of
filtering. The added variables are correctly idesdi as having little influence (figure 2.D). Theost important
inputs are: 1)Venting day?2) Win-%, S 3) Win, g-value and 4)Win, Ff Indeed, the histograms for these
coordinates on figure 1 seem to be affected the byothe applied filters, i.e. their behavioraltdizutions are
the “least” uniform on figure 1.
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Figure 2: Comparing KS-2-test sensitivity measuvken varying the quantile size (A) and sample @)eComparison of KS-2-test SA with other
sensitivity measures based on 5.000 simulationsR@nking of inputs due to the combined sensitioity3 outputs (D).

4 Conclusion

KS-2 SA enables ranking (FP) and Factor Fixinghplis with respect to multiple outputs. In futurerky we
will try to apply KS-2 SA together with PCP in rdahe (Factor Mapping) so that the users immedyateke
which coordinates have been affected by the fiiteri
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