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Confidence intervals for Sobol’ indices
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When studying the interactions between variables, going beyond regressions is crucial for more
precision and accuracy. In fact, studying the interdependence between the variances of each of the
model’s components adds a wider array of interpretation and forecasting techniques. The literature
defines this analysis segment as variance based sensitivity analysis which is regarded as one of the
most frequently used computer models in engineering studies (Ferretti et al., 2016). The model’s
output variance that is caused by a specific model input or a combination of more than one input
(Sobol, 1993; Iooss et al., 2015).
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where f(X) is the computer model, X = (X1, . . . , Xd) ∈ Rd are the model inputs (independent
random variables), i = 1, . . . , d, and X−i is the input vector except Xi. Si, the first-order Sobol’
index, only includes the sole effect of Xi, while Stot

i , the total Sobol’ index, takes into account all
the effects of Xi including its interaction effects with other inputs. For u a subset of {1, 2, ..., d}
we consider the partition: X = Xu ∪Xū, where ū is the complement of u in {1, 2, ..., d}.
As in Iooss et al. (2016) ,we chose to study estimators which provide (Ŝi, Ŝ

tot
i ), estimates of

(Si, S
tot
i ), by using two independent input designs A and B, matrices with n rows (sample size) and

d columns. the following set We focus especially on the Martinez estimator that sets Sobol indices
as correlation coefficient. The mathematical properties of the empirical correlation coefficient
lead to explore more thoroughly the properties of this estimator and build thereafter confidence
intervals. Martinez estimator (Martinez, 2011): By noticing that
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where AB(u) = Au ∪Bū, u a subset of {1, 2, ..., d} (for Martinez estimator u=i, i = 1, . . . , d).
ρ is the linear correlation coefficient, the Sobol’ indices can be estimated using the well-conditioned
empirical formula of ρ (i.e. using the product of differences).

For the Martinez estimator, asymptotic confidence intervals are approximated by using Fisher’s
transformation applied to the sample correlation coefficients Ŝi and Ŝtot

i from Eq 2. It is only
valid under Gaussian hypothesis of the output variable distribution. The classical 95% confidence
intervals obtained by the Martinez method are described in Iooss et al. (2016).

Based on the fact that the Sobol indices are interpreted as correlation coefficients, we give two
asymptotic results which will be applied for Sobol indices. This methodology is analogue to the
demonstration given by Lehman (1999). We provide a formula for the asymptotic variance as a
polynomial function of the correlation coefficient.
We assume that (Y,Z) is a squared integrable couple of random variables. Rn is the empirical
correlation coefficient of (Y,Z) and ρ the theoretical correlation coeffcient. Cn,σn(Y ) and σn(Z)
mean respectively the empirical covariance and the empirical variances. The first theorem concerns
the asymptotic normality of the triplet {Cn, σn(Y ), σn(Z)}. If there K is the covariance matrix
formed after applying the central limit theorm to the triplet {Cn, σn(Y ), σn(Z)}. the asymptotic
normality of Rn gives: √

n(Rn − ρ)→ N (0, τ2) (3)

τ2 is a polynomial function of ρ, this can facilitate the implementation of the method. τ2 = P (ρ)
where:

P (x) = Ax2 +Bx+ C (4)

A,B and C depends on the coefficients of K.
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Remark

Bishara et al. (2016) gives recently several alternatives to Fisher’s method to compute confidence
intervals when data are not normal. The methods are classified in two main groups: Transforming
data and Bootstrapping. For the transforming data methods the best performance was performed
by the well kown Speraman rank-order and the rank inverse normal transformation. Among the
bootstrapping methods Efron et al. (1994), which have the merit of conserving the original scale
of raw data, an observed imposed bootstrap had an adequate coverage probability with precise
intervals comparing to other Bootstrap methods.
The work of Beasly et al. (2007) served as a foundation for this method in which computing time
has been reduced making computations easier for larger samples.

In this communication, the extension of the Martinez method to non Gaussian distribution is
studied. Indeed, non Gaussianity can distort the Fisher’s confidence interval, and the outcome can
be quite misleading. The two following points will be discussed:

1. Asymptotic confidence intervals. In this case, through the methodology described in Remark
2 we give an asymptotic confidence interval for Sobol’ indices in a general case.

2. Non asymptotic confidence intervals. In this case, we compare several methods to improve
the Martinez method while keeping the approximation approach on the one hand and with a
Bootstrapping approach on the other hand. We base this study on the methodology described
in remark 3. Comparisons are made in terms of coverage probability and confidence interval
length.

Numerical studies will illustrate all these effects for the different methods, demonstrating that with
the asymptotic method we have more accurate coverage probability comparing to the Martinez
approach. The results suggest that sample non Gaussianity can justify avoidance of the Fisher’s
confidence interval in favor of more robust alternative (Non-asymptotic or asymptotic).
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