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In the field of sensitivity analysis of model outputs, the most popular methods are those based on
the variance decomposition of the output, such as the Sobol’ indices, as they allow defining easy-to-
interpret indices measuring the contribution of each input variable to the overall output dispersion.
However, these indices are not adapted to the analysis of the impact of inputs on output quantities
characterizing extreme events, such as a failure probability, a quantile or a failure domain.

In the following, we denote g(·) the studied model, X = (X1, . . . , Xd) ∈ X the random vector of
the d independant input variables and Y = g(X) the model output. X follows a joint probability
density function f(x) . We focus on a typical problem in structural reliability (Morio and Balesdent,
2015), which is the analysis of the failure probability (the failure event arrives with the event
g(x) < 0):

p =

∫
X
1{g(x)<0}f(x)dx.

Perturbed-law based sensitivity indices

Based on the perturbation of each marginal input density, a new type of sensitivity indices has
been recently developed (Lemâıtre et al., 2015). An input Xi, with marginal density fi, is replaced
by the perturbed variable Xiδ. Xiδ follows the density fiδ, based on the initial fi perturbed of a
δ quantity . This allows defining the following perturbed probability piδ:

piδ =

∫
X
1{g(x)<0}

fiδ(xi)

fi(xi)
f(x)dx.

From this quantity, we define the Perturbed-Law based Indices (PLI) in the following way:

Siδ =

[
piδ
p
− 1

]
1{piδ>p} +

[
p

piδ
− 1

]
1{piδ≤p}. (1)

The PLI measures have some expected properties, such as being equal to 0 when the failure
probability is not changed by the perturbation, or taking a sign that indicates the direction of
change of the probability with the δ perturbation. fiδ is obtained by minimizing the Kullback-
Leibler divergence KL between fiδ and fi for a given shift δ of a statistical characteristic (for
example the mean, the variance, a quantile, . . . ) of the law of Xi:

KL(fi,δ, fi) =

∫ +∞

−∞
fi,δ(xi) log

fi,δ(xi)

fi(xi)
dxi.

Easy minimization of KL provides explicit solutions of fiδ for a large range of perturbed parameters
of fi (e.g. mean, variance, . . . ) on classical pdf (e.g. Gaussian).

Monte-Carlo estimation of the PLI measures

An analytical calculation of the probabilities p and piδ is not possible in practice, and a Monte-Carlo
sample (x1,x2, ...,xN ) is used. Thus, the estimations are respectively:

p̂N =
1

N

N∑
n=1

1g(xn)≤0 and p̂iδ,N =
1

N

N∑
n=1

1{g(xn)≤0}
fiδ(x

n
i )

fi(xni )
f(xn).

In practice, the estimation of PLI indices might require a very large number of computer experi-
ments if the failure probability is very low (for instance 10−6 or less). This could reveal impractical
if the code g is costly.
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To improve the estimation of p and piδ, the importance sampling or subset simulation methods
could be used but they often remain too costly in practice (Morio and Balesdent, 2015). We propose
here to use a metamodel-based approach which has shown a noticeable efficiency for Sobol’ indices
(Le Gratiet et al., 2016). In particular, the Gaussian process metamodel allows to control the error
on the sensitivity estimates due to the metamodel approximation.

Bayesian Importance Sampling

The so-called Bayesian Importance Sampling (BIS) consists in two steps :
1) A Gaussian process model g̃ of the code is built using a budget of N0 < N computer experiments.
This allows to define a relevant importance density at the following step;
2) p and piδ are estimated with a N1 = N −N0 importance sampling scheme (Bect et al., 2015).

The Bayesian optimal importance density f∗IS(x) is proportional to f(x)
√

Pg̃N0
[g(x) < 0]. If Ẑ is

an estimator of Z =
∫
X f(x)

√
Pg̃N0

[g(x) < 0]dx, the estimates of p and piδ are respectively :

p̂BISN0,N1
=

Ẑ

N1

N1∑
n=1

1{Eg̃N0
[g̃(xn)]<0}√

Pg̃N0
[g(xn) < 0]

and p̂BISiδ,N0,N1
=

Ẑ

N1

N1∑
n=1

1{Eg̃N0
[g̃(xn)]<0}√

Pg̃N0
[g(xn) < 0]

fiδ(x
n
i )

fi(xni )
f(xn).

Perspectives: PLI for sensitivity analysis over a quantile

PLI measures can be applied to an output quantile qα(Y ) = inf{y s.t. F (y) ≥ α} with F the
distribution function of Y . This requires to combine quantile estimation and importance sampling.
A naive approach for the estimation of quantiles could consist in replacing F by its empirical
estimator in the latest formula. By re-ordering the yn = g(xn) we could define kα,iδ by

kα,iδ = min

{
k s.t.

k∑
n=1

fiδ(x
(n)
i )

fi(x
(n)
i )

f(x(n)) ≥ α

}
,

where each (n) denotes the re-ordered index of yn in our sample. A straightforward estimator
of qα(Y ) is given by q̂α(Y ) = ykα . However, this estimator is unlikely to show good consistency
properties, since it is built on a non-continuous quantile function obtained by inverting the em-
pirical cumulative distribution function of Y . A more promising approach would be to use a
quantile-regression framework (Egloff and Leippold, 2010). We notice that qα(Y ) can be written
as argminrEX [ρα(g(X)−r)], where ρα denotes the check-function ρα(u) = u(α−1{u<0}) (see Fort
et al., 2013). This suggests the following estimator:

q̂α,iδ(Y ) = argminr

N∑
n=1

ρα(g(xn)− r)fiδ(x
n
i )

fi(xni )
f(xn).

Replacing p and piδ in (1) respectively by q̂α and q̂α,iδ provides the PLI over a quantile.
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