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2 Université Paris-Descartes, France

Goal-oriented sensitivity analysis (GOSA, [1])

Let f be a numerical code and Y its one-dimensional output such that Y = f(X1, X2, ..., Xd),
where X = (X1, X2, ..., Xd) are independent random inputs. Regarding a certain strategy for
the study, we focus on one precise property of Y ’s distribution, θ(Y ): it can be E[Y ], qα(Y ), the
α-quantile of Y , P(Y > ts) with ts a threshold. If there is a need for sensitivity analysis, GOSA
states that it may be more relevant to restrict it to θ(Y ). Therefore our wish is to quantify the
inputs’ influence over θ(Y ). It consists in studying the variability of the conditional parameter
θ(Y | Xi). We adopt the following theoritical method: for each input Xi, with i ∈ {1, ..., d}, one
consecutively sets Xi = xi for all the possible values of Xi and simulates f(X1, ..., xi, ..., Xd) an
infinite number of times. Hence one can compute θ(Y | Xi = xi). We repeat this procedure for
all the possible values xi so that we learn θ(Y | Xi)’s distribution. The latter contains the needed
information about Xi’s influence over θ(Y ).

Sensitivity analysis indices with respect to a contrast : the quantile case

In [2] the authors introduced the following sensitivity index, for i ∈ {1, ..., d} and α ∈]0, 1[:

Sicα(Y ) = min
θ∈R

E [cα(Y, θ)]− EXi
[
min
θ∈R

E [cα(Y, θ) | Xi]

]
,

with: ∀y, θ ∈ R cα(y, θ) = (y− θ)(1y≤θ−α), which evaluates the influence of Xi over qα(Y ). Be-
sides, let us recall that qα(Y ) = arg min

θ∈R
E [cα(Y, θ)] and qα(Y | Xi = xi) = arg min

θ∈R
E [cα(Y, θ) | Xi = xi],

therefore:
Sicα(Y ) = E [cα(Y, qα(Y ))]− E [cα (Y, qα (Y | Xi))] .

Hence one can see that Sicα(Y ) quantifies the modification of qα(Y ) when one sets Xi to a single

value. Besides, we easily prove EXi
[
min
θ∈R

E [cα(Y, θ) | Xi]

]
≤ min

θ∈R
E [cα(Y, θ)]. Then the authors

normalize the index as they divide it by min
θ∈R

E [cα(Y, θ)]. This now implies: 0 ≤ Sicα(Y ) ≤ 1. In

order to justify the meaning of the index, we prove the following property:

Sicα(Y ) = 0 if and only if qα (Y | Xi) = qα(Y ) a.s.
Sicα(Y ) = 1 if and only if ∀xi Var (Y | Xi = xi) = 0.

Estimator and property

From a n-sample
(
Y 1, ..., Y n

)
, where n ∈ N, and for j ∈ {1, ..., n}, Y j = f

(
Xj

1 , ..., X
j
d

)
, we

propose an estimator for Sicα(Y ). The first term can be easily estimated by a classical empirical
estimation min

θ∈R
1
n

∑n
j=1 cα

(
Y j , θ

)
, where q̂α(Y ) := arg min

θ∈R

1
n

∑n
j=1 cα

(
Y j , θ

)
is the empirical

quantile estimator. The second term is much more complicated to estimate as it contains a double
expectation (including a conditional expectation) and requires to solve a minimization problem.
We base its estimation on the following asymptotic result proved in [3]:

∀xi st fi(xi) 6= 0, arg min
θ

1

fi(xi)

n∑
j=1

cα
(
Y j , θ

)
Kh(n)

(
Xj
i − xi

)
P−→

n→∞
arg min

θ
E [cα(Y, θ) | Xi = xi] ,

where K is a positive second-order kernel on a bounded compact, (hk) the bandwidth sequence
and fi the density function of Xi, with the conditions h(n) −→

n−→+∞
0 and h(n)×n −→

n−→+∞
+∞.
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The problem is that we are not interested in the minimizers but in the minimal values for each
possible xi by which we condition, and need to compute their average over the different xi. At the
end, we propose the following kernel-based estimator for Sicα(Y ):

Ŝicα(Y ) = min
θ∈R

1

n

n∑
j=1

cα
(
Y j , θ

)
− 1

n

n∑
k=1

min
θ∈R

1

k.fi(Xk
i )

 k∑
j=1

cα
(
Y j , θ

) 1

hk
K

(
Xk
i −X

j
i

hk

) .
Under the same conditions than above we prove the consistency of the estimator:

Ŝicα(Y )
P−→

n−→+∞
Sicα(Y ).

Applications to defect detection

We study an example in the context of defect examination: we inspect of a structure by sending a
wave that reflects on the hypothetical defect. The random reflected signal Z, function of the size
of defect a, random environmental properties X and a noise of observation δ, is measured so that:
(Z(a,X, δ) > ts) implies that the defect is detected. Let us focus on the random defect a90, function
of the inputs X, defined as P (Z(a90, X, δ) > ts | X) = 0.90, which is the defect that is detected
with a probability of 90% under the conditions X. In this example we consider three inputs,
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Figure 1: Index estimation for the influence of the three inputs over qα (a90). Ŝ1
cα (a90) is in red,

Ŝ2
cα (a90) in green and Ŝ3

cα (a90) in yellow.

X = (X1, X2, X3), and the wish is to estimate S1
cα (a90) , S2

cα (a90) and S3
cα (a90) . The different

estimators Ŝ1
cα (a90), Ŝ2

cα (a90) and Ŝ3
cα (a90) are computed for a size of sample n = 2, ..., 150.

Bibliographie

[1] N. Rachdi (2011), Statistical Learning and Computer Experiments, Thèse de l’Université Paul
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