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The performance of credible simulations in open engineered biological frameworks is 
an important step for practical application of scientific knowledge to solve real-world 
problems and enhance our ability to make novel discoveries. Therefore, maximising 
our potential to explore the range of solutions at frontier level could reduce the 
potential risk of failure on a large scale. One primary application of this type of 
knowledge is in the management of wastewater treatment systems. Efficient 
optimisation of wastewater treatment plant focuses on aggregate outcomes of 
individual particle-level processes. One of the crucial aspects of engineering biology 
approach in wastewater treatment study is to run a high complex simulation of 
biological particles. This type of model can scale from one level to another and can 
also be used to study how to manage real systems effectively with minimal physical 
experimentation.  
 
To identify crucial features and model water treatment plants on a large scale, there 
is a need to understand the interactions of microbes at fine resolution using models 
that could provide the best available representation of micro scale responses. The 
challenge then becomes how we can transfer this small-scale information to the 
macroscale process in a computationally efficient and sufficiently accurate way. It 
has been established that the macro scale characteristics of wastewater treatment 
plants are the consequences of microscale features of a vast number of individual 
particles that produce the community of such bacterial (Ofiteru et al. 2014). 
 
Nevertheless, simulation of open biological systems is challenging because they 

often involve a large number of bacteria that ranges from order 1012 to 1018 individual 

particles and are physically complex. The models are computationally expensive and 

due to computing constraints, limited sets of scenarios are often possible. A 

simplified approach to this problem is to use a statistical approximation of the 

simulation ensembles derived from the complex models which will help in reducing 

the computational burden. Our aim is to build a cheaper surrogate of the Individual-

based (IB) model simulation of biological particle. The main issue we address is to 

highlight the strategy for emulating high-level summaries from the IB model 

simulation data. 

Our approach is to condense the massive, long time series outputs of particles of 

various species by spatially aggregating to produce the most relevant outputs in the 

form of floc and biofilms aggregates. The data compression has the benefit of 

suppressing or reducing some of the nonlinear response features, simplifying the 

construction of the emulator. Some of the most interesting properties at the 

mesoscale level like the size, shape, and structure of biofilms and flocs are 

characterised, see Figure 1. For instance, we characterize the floc size using an 

equivalent diameter. This strategy enables us to treat the flocs as a ball of a sphere 



Figure 2: Comparison of the emulator performance with simulation data for two 
characterized outputs from IB model of floc simulation (black) and their emulator 

predictions (green) with 95% C.I (red). 

and or fractal depending on the shape, and we approximate the diameter of a sphere 

that circumscribes its boundary or outline.  

We use Gaussian process emulation in the form of kriging metamodels where output 

data can be decomposed into a mixture of deterministic (non-random trend) and a 

residual random variation. In particular, we develop dynamic emulators for the multi-

outputs simulation data using a multivariate kriging. The kriging model is formulated 

appropriately to filter the noise derived from replicate simulations. Due to the nature 

of output data from the simulation model, we use a dynamic emulation technique. 

Dynamic emulation models the evolution or trajectory of random variables over some 

time-steps (Conti et al. 2009). Finally, we perform the sensitivity analysis of the 

kriging model by calculating the total effects of each explanatory variable which 

helps to identify the relative importance of variables in the model.  

Results 
  

Figure (1) is the simulation data 
showing the transformation of 
microscale particles to biofilms and 
floc aggregates at the mesoscale 
for a particular time. 

 

 

In Figure (2), the emulator for the 
fractal dimension predicts the temporal 
behaviour relatively well, almost all the 
points lie within the 95% C.I. The 
predicted bands remain very small. The 
species diversity emulator produces 
similar pattern to the simulation data 
although after day ”3” the emulator 
deviates from the usual trend but not 
significantly. We note that the shape, 
size and structure of biofilms and floc 
are essential operation parameters in 
the management of wastewater. 

 
The sensitivity analysis in Figure (3)    

indicates that nutrient boundary 
conditions are the most critical 
parameters for predictions of most of 
the outputs. These parameters regulate 
the distribution and transports of 
nutrients across the computational 
domain thus determine the particle 
growth and division. 
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Figure 1a: rough surface biofilms Figure 1b: rough surface flocs 

 

Figure 3: Barplots showing the kriging based sensitivity indices for the eight 

characterized outputs from IB model. 


