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To unsure the high reliability level of industrial structures, EDF conducts probabilistic studies [1].
They are based on a computational model, which aims at describing at best the physical behaviour
of a structure under loading. A statistical model is build to describe the uncertainties of the param-
eters involved in the computational model. Unfortunately, little information is usually available
on the stochastic dependence of variables. The statistical model is therefore partial and can be
reduced to its margins only. Consequently, reliability studies in industrial practice are frequently
carried out assuming independence of variables. A question that arises is how can we enhance the
robustness of the studies without knowledge of the correlations? To answer this, our work aims to
quantify the impact of potential dependencies on the structure reliability.

The methodology consider the input random vector X = (X1, . . . , Xd) ∈ SX and the output
random variable Y = g(X) ∈ SY of the model g. The quantity of interest of the output variable Y ,
used to quantify the risk faced by the structure, is denoted by C (Y ). We use the notion of copulas
to describe the dependence structure of X, independently of its marginals. The joint Cumulative
Distribution Function (CDF) of X is thus given as

FX(x1, . . . , xd) = Cρ (FX1
(x1), . . . , FXd

(xd)) ,

where Cρ : [0, 1]d → [0, 1] is a copula with parameter ρ ∈ Sρ and FXi
is the marginal’s CDF of

Xi. We also introduce the notation Xρ to describe a random vector X associated with a copula
Cρ, and the related output variable Y ρ = g(Xρ).
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Figure 1: Uncertainty propagation of X with a copula Cρ through the model g.

Some related studies focused on measuring the impact of a perturbation on a marginal Xi [2] or
an incomplete joint density of X [3] on the model output Y . In this work, we propose a sensitivity
index which quantify, for a chosen copula, the change on the quantity of interest between the worst
case scenario and the independence case. Such an index is described by

I =
C (Y ρ∗

)

C (Y )
,
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where C (Y ) is the quantity of interest of Y at independence and ρ∗ is the dependence configuration
obtained by maximising the risk R, such as ρ∗ = argmaxρ∈Sρ R(ρ). The index I would describes
the general impact of the dependence structure on C . Moreover, the index Iij quantifies the impact
of a one pair of variables dependence Xi-Xj on C , while the other variables are independent. As
for the general index I , it is defined as

Iij =
C (Y ρ∗

ij )

C (Y )
,

where ρ∗ij = argmaxρ∈Sρ R(ρij) is the dependence parameter of the pair of variables Xi-Xj leading
to the worst case scenario. There is, for the moment, no direct relation between Iij and I .

The estimation of such indices is almost entirely controlled by the estimation of the worst case
dependence structure ρ∗. This problem of extremum-estimation is consistent using a Monte-Carlo
sampling. The figure 2 shows the related estimated one pair indices, for a Gaussian copula, applied
to the Flood example [4] using the failure probability of Y as the quantity of interest. The closer
an index Iij is to 1 and the less impactful the dependence of the pair Xi-Xj is. And vice versa
when the value is high.
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Impact of a linear dependence between one pair of variables.

Figure 2: Monte-Carlo estimation of the indices Iij for each pair Xi-Xj of the flood example.

Unfortunately, the Monte-Carlo sampling is costly and can hardly be performed for computation-
ally expensive models. Thus, other estimation methods, such as Random Forests [5], could be
considered to reduce the number of model evaluations. Moreover, such indices can be too pes-
simistic, because the worst case scenario can be very unlikely. Therefore, another perspective
would be to consider every penalised dependence structures instead of the worst case configuration
only.
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