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Abstract

The validation of computer models is an essential task to increase their credibility. One of the most
important exercises in the validation framework is to check whether the computer model adequately
represents reality [1]. This is achieved by comparing model predictions to observation data. This
exercise generally leads to model calibration because the model parameters are usually poorly known
a priori (i.e. before collecting data). Good practice in calibration of computer models consists of
searching for all parameter values that satisfactorily fit the data, thus determining their plausible
range of uncertainty. This can be achieved in a Bayesian framework in which the prior knowledge
about the model and the observed data are merged to define the joint posterior probability distribution
function (pdf) of the parameters. The issue is then to assess the joint posterior pdf.

In probabilistic inverse modeling, the parameter set x = (x1, . . . , xd) of a computer model is inferred
from a set of observation data y using the Bayesian inference, which defines the conditional joint
posterior pdf as follows:

p(x|y) ∝ p(y|x)p(x), (1)

where p(x) is the prior density that characterizes the investigator’s beliefs about the parameters before
collecting the new observations, and p(y|x) is the likelihood function, which measures how well the
model fits the data. The parameter set that maximizes Eq. (1), namely:

x
MAP = argmax

x

p(x|y), (2)

is called the Maximum A Posteriori (MAP) estimate of the parameters. It is the most probable
parameter set given the data and can be inferred via an optimization technique. The marginal
posterior pdf that characterizes the uncertainty of a single parameter is defined by the following
integral:

p(xi|y) =

∫
p(x|y)dx−i, ∀i = 1, . . . , d (3)

where x−i represents all the parameters except xi. Usually, the integral in Eq. (3) is evaluated by a
multidimensional quadrature method or by direct summations in a large sample of p(xi|y) obtained,
for instance, via an MCMC technique.
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The inference of model parameter posterior pdf by means of Markov chain Monte Carlo (MCMC)
sampling techniques [2, 3] has received much attention in the last two decades. MCMC explores the
region of plausible values in the parameter space and provides successive parameter draws directly
sampled from the target joint pdf. Some selection criteria are used to ensure that the successive draws
in the chain improve. This means that, throughout the sampling process, probable draws with respect
to the target distribution are more likely drawn. Many developments and improvements have been
proposed to accelerate MCMC convergence (see [4–6]).

Recently, [7] proposed a new probabilistic approach to the inverse problem whose main idea is to
maximize the joint posterior pdf of a parameter set with one selected parameter sampling successive
prescribed values. This provides the so-called Maximal Conditional Posterior Distribution (MCPD)
of the selected parameter. The maximal conditional posterior distribution of xi is defined as fol-
lows:

P(xi) = max
x−i

(p(x−i|y, xi))× p(xi|y). (4)

An informal definition can be given by stating that a point estimate of the MCPD is the maximal
value reached by the joint pdf (Eq. (1)) for a given (prescribed) value of one parameter i.e. xi).
This maximal value, in the context of model inversion, assumes that the set x−i maximizes (Eq. (1)),
knowing that xi is prescribed. By applying the axiom of conditional probabilities to (Eq. (4)), it can
be stated that max {p(x−i|y, xi)} × p(xi|y) = maxx−i

{p(x−i, xi|y)}. Therefore, the MAP estimate
(when it exists) belongs to the MCPD of all parameters.

The main advantage of the recent MCPD technique is that parameter distributions can be inferred
independently. Therefore, the MCPDs can be simultaneously evaluated on multicore computers (or
on multiple computers). This drastically reduces the computational effort in terms of computational
time units (CTU). Our presentation will develop the MCPD approach and exemplify its efficiency in
solving inverse problems.
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