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Uncertainty and sensitivity analysis has been recognized as an essential part of model applications. 
Global sensitivity analysis (GSA) is used to identify key parameters whose uncertainty most affects the 
output. This information can be used to rank variables, fix or eliminate unessential variables and thus 
decrease problem dimensionality. Among different approaches to GSA variance-based Sobol sensitivity 
indices (SI) are most frequently used in practice owing to their efficiency and ease of interpretation [1-3]. 
Most existing techniques for GSA were designed under the hypothesis that model inputs are independent. 
However, in many cases there are dependences among inputs, which may have significant impact on the 
results. Such dependences in a form of correlations have been considered in the generalised Sobol GSA 
framework developed by Kucherenko et al, [4]. However, there is an even wider class of models involving 
inequality constraints (which naturally leads to the term constrained GSA or cGSA) imposing structural 
dependences between model variables. This implies that the parameter space may no longer be considered 
to be an n-dimensional hypercube which is the case in existing GSA methods, but may assume any shape 
depending on the number and nature of constraints. This class of problems encompasses a wide range of 
situations encountered in the natural sciences, engineering, design, economics and finances where model 
variables are subject to certain limitations imposed e.g. by conservation laws, geometry, costs, quality 
constraints etc. 

The development of efficient computational methods for cGSA is challenging because of potentially 
arbitrary shape of the feasible domain of model variables variation, thus requiring the development of 
special Monte Carlo or quasi-Monte Carlo sampling techniques and methods for computing sensitivity 

indices. We developed a novel method for estimation of Sobol’ SI for models  1,..., nf x x  defined in a non-

rectangular domain n . Consider an arbitrary subset of the variables  
1
,...,

si iy x x , 1 s n   and a 

complementary subset  
1
,...,

s ni iz x x


 , so that  1,..., ( , )nx x y z . Then formulas for the main effect and 

total Sobol’ SI have the following form:  
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Here ( , )p y z
 is a joint probability distribution and ( )p y  is a marginal distribution. Both distributions are 

defined in n . We propose two methods for estimation Sobol’ SI: 1) quadrature integration method which 
may be very efficient for problems of low and medium dimensionality; 2) MC/QMC estimators based on the 
acceptance-rejection sampling method. A few model test functions with constraints are considered for 
which we found analytical solutions. These solutions are used as benchmark test for verifying for the 
quadrature and MC and QMC integrations methods. One of the models is the K-function 

1 1

( 1) ,
in

i

j

i j

K x
 

    where variables , 1,...,jx j n , 4n   are independent uniformly distributed random 

variables in [0, 1]. We consider four different cases for domain definitions. The first one is an unconstrained 

problem ( nHx ). In the other three cases the unit hypercube is divided by a hyperplane into two parts one 

of which is the permissible region for the problem variables , 1,...,jx j n . The constraints are as follows: 
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1 1 2: 1,I x x         

2 3 4: 1,I x x         

3 1 3: 1.I x x         

These constraints can be represented using the following indicator functions: 1 1 2(1 )I U x x   , 

2 3 4(1 )I U x x   , 3 1 3(1 )I U x x   . Fig. 1 shows a schematic plot illustrating 1I  constraint in the 3D 

space. 

 
Fig. 1. Schematic representation of a permissible region for the K-function (shaded area) in the 3D case.  

 

Fig. 2. (a) Main effect and (b) total sensitivity indices of the K-function in 4H  for the unconstrained 
and constraints cases 

The values of iS  and T
iS  for all four cases are presented in Fig. 2. The method is shown to be general 

and efficient.  
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