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Most of the results in sensitivity analysis consider deterministic computer codes, that is codes
providing the same output values for the same input variables (Iooss and Lemâıtre, 2015). For
instance, the sensitivity indices of Sobol makes it possible to know the part of the variance output
explained by each of the model input. Formally, let us consider the model

Y = g(X),

where X = (X1, . . . Xp) is a random vector of independent input parameters (for i = 1, . . . p, Xi

belongs to some probability space Xi), Y ∈ R is the code output and g(·) is a deterministic function
representing the computer code.

In this work, we propose to deal with a stochastic computer code denoted by

Y = f(X, ε),

where f(·) is the computer code and ε is a random variable representing the physical system
randomness (see Marrel et al., 2012, for a typological description of this kind of models). When
performing a Sobol’ sensitivity analysis on such a code, two different situations occur:

1. We are interested by the full probability density function (pdf) of the outputs. Transforma-
tion of this pdf to a few scalar quantities of interest (e.g. the first statistical moments of
the studied variable) is a first simple solution, while metrics between pdfs can also be used
(Douard and Iooss, 2013). Aggregated Sobol’ indices (Gamboa et al., 2013) propose a more
elegant solution as shown in Le Gratiet et al. (2016) on an application involving probability
of detection curves (which look like cumulative distribution functions).

2. We are only interested by the mean value relative to the inherent randomness of the code.
In this case (called “Monte Carlo calculation codes” in several engineering domains), we
substitute the code by its empirical mean (called “simulator” in this paper).

We focus our analysis on the second situation. In this context, the computer code does not provide
the true value of the model (noticed g(·)) at x but instead a value f(x, ε) where ε represents the
physical system randomness. A standard technique assumes that ε is a random variable such that
E(f(x, ε)2) <∞. Hence the real value of g at x can be represented as

Y = g(X) := g(X1, . . . , Xp) = E(f(X, ε)|X). (1)

For deterministic computer code, by assuming that Y is square integrable and VarY 6= 0, the
corresponding vector of closed Sobol’ indices is then

Su
Cl(g) :=

(
Var(E(Y |Xi, i ∈ u1))

Var(Y )
, . . . ,

Var(E(Y |Xi, i ∈ uk))

Var(Y )

)
, (2)

where u := (u1, . . . , uk) are k subsets of Ip := {1, . . . , p}. For X and for any subset v of Ip we
define Xv by the vector such that Xv

i = Xi if i ∈ v and Xv
i = X ′i if i /∈ v where X ′ and X are two
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independent and identically distributed vectors. We then set Y v := g(Xv). We also define
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Taking two independent samples
(
X(i)

)
i=1...N

and
(
X ′(i)

)
i=1...N

, where N is the elementary sam-
ples size, the Janon-Monod estimator of Su

Cl(g) is then defined as (Janon et al., 2014):
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(3)

As the computer code cannot provide values of g, we use the Sobol’ indices associated to f (instead
of g) and study either they are close to the Sobol’ indices of g or not. It is then natural to
approximate E(f(X, ε)|X = x) by its empirical mean. Thus we define what we call a simulator:

Ỹ := g̃(X, ε, n) =
1

n

n∑
i=1

f(x, ε(i)) = g(X) + δn(X, ε),

where n is the sample size (called the number of particles) and δn(x, ε) is the perturbation. We

then define the Sobol’ indices associated to g̃ and their estimators using Eqs. (2) and (3) with Ỹ
instead of Y . Moreover, we can prove that the estimator Tu

N,Cl(g̃) can be used to approximate the
true Sobol’ indices Su

Cl(g). Indeed, following the proofs of Janon et al. (2014), we can derive a
Central Limit Theorem for this estimator (not shown here in this short abstract).

We will also numerically study the convergence of the Sobol’ indices estimates with respect to the
sample sizes n (number of particles) and N (size od the elementary samples for Sobol’ estimates)
considering the following toy function:

f(X1, X2, ε) = sin(X1(ε1 + ε2X2)) + ε3,

with the independent random variables X1 ∼ U [0, 1], X2 ∼ U [0, 1], ε1 ∼ N (1, 1), ε2 ∼ N (2, 1) and
ε1 ∼ U [0, 1]. This leads to a function g defined by

g((x1, x2)) = E (f(X1, X2, ε)|X1 = x1, X2 = x2) =
1

2
+ sin(x1(1 + 2x2))e−

x2
1
2 (1+x2

2).

Finally, an application will consider a Monte Carlo simulator of industrial asset management
strategies where the variable of interest is an economic indicator (the Net Present Value).
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