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Abstract

So far, most studies in the photovoltaic (PV) field have been done with a pseudo-
deterministic point of view. The input uncertainty is propagated through a numer-
ical code and provides the results with a 90% interval confidence, the parameters
and the input probability distributions being determined by an expert. However,
for investors, the risk associated to the investment is closely linked to the uncertain-
ties in the evaluation of how much the PV power plant will produce. A statistical
framework is needed to provide a more accurate estimation of the power produced
by the PV plant and the associated error. For the modeling of PV power plants, a
variety of computer models have been constructed. One of them, which is also the
most accurate to date, is highly time-consuming. Hence, this study will deal with
the sensitivity analysis and calibration of time-consuming codes, based on a large
amount of data.

The modeling of a PV power plant can be performed with an equivalent electric
scheme which tries to match its physical behavior. Two physical models are intro-
duced. The first one is "simple" and the physical equations are straightforward.
A Python code can be made up from those equations and predicts the amount of
power, generated by a number of panels in simplified environmental conditions, rela-
tively quickly. The second one is more complete. It matches better the real behavior
of the PV power plant and can account for the partial shadings that may occur in a
large-size power plant. Thus, the second physical model is more interesting to work
with but also more complicated (high computing time and less regular behavior for
example).

A physical model has two kinds of inputs: controlled variables which are observed in
experimental conditions on the one hand and (usually uncertain) parameters on the
other hand. The latter have to be calibrated to make the outputs of the physical
model close to the observed quantities of interest, for instance the instantaneous
power of the PV plant. Controlled variables are, for example, the meteorologi-
cal data, consisting of: the amount of irradiation from the sun, the temperature,
the geographical position (latitude and longitude) and the time. The parameters
are factors inherent to the physical model (the yield of the PV module, the module
temperature coefficient, etc.). Generally, the values of these factors are fixed accord-
ing to expert elicitation. However, real-life experience shows that, when parameters
are set according to expert opinion only, code outputs may be far from experimental
data. To determine and evaluate the uncertainties on these parameters more pre-
cisely, a calibration has to be conducted. A Bayesian framework is adopted to make
this inference. This will allow us to confront expert information and experimental
data.

The first step for such a study is to perform a sensitivity analysis. This is crucial for
the following step because sorting parameters from the most to the less important
will allow us to save a lot of computational time thereafter. The number of parame-
ters to be calibrated depends on the physical model. However in both present cases
it always exceeds ten. A screening method is first carried out to separate the ones
which have no overall impact on the output. Afterwards, a Sobol analysis is done
to sort the remaining parameters and indicate which one is the most important.
The Sobol analysis is important in this case, because it provides a physical point of
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view on which parameters have an impact on the power and allows us to check the
accuracy of the analysis.

The second step is to calibrate the parameters. Once a statistical model is set,
Bayesian inference will combine all available data with a prior distribution to ob-
tain a posterior distribution on the unknown parameters. The experimental data
are the power measured instantaneously on the test stand. At a high sampling fre-
quency, the number of experimental points is very high. However, all of them are
not really informative. For example, during the night the PV power plant produces
nothing and these data can be removed from the data set. Globally, the considered
data can be limited to the time period from daybreak to sunset. The calibration is
performed with Markov Chains Monte Carlo algorithms (MCMC) like Metropolis-
Hastings or Metropolis within Gibbs algorithms. A tempering scheme is adopted to
deal with the full amount of available data without jeopardizing the time needed to
achieve convergence of MCMC algorithms. Furthermore, an adaptive exploration
kernel is chosen for the MCMC algorithms since the dimension is high and adapting
the exploration kernel to the covariance of the posterior distribution will accelerate
convergence.

To ensure that the production predictions of the power plant provided by the code
are reliable, the code has to be validated. Validation means to assess whether the
code produces outputs close to observed power measures once calibration has been
conducted. This validation question can be expressed as a choice between two sta-
tistical models. In the first one, the only error between the outputs of the physical
model and the observed power measures is a measurement error i.e. a classical
white noise process. In the second one, a discrepancy term will be added to the
measurement error to capture a systematic error of the physical model. Usually,
this discrepancy is modeled as a Gaussian process. If the model with the discrep-
ancy is selected by the statistical procedure, it will mean that the physical model
does not predict well enough the actual power. In this case, pure model predictions
can be corrected by adding the estimated discrepancy.

Finally, all of these techniques are computationally demanding. Indeed, some of the
physical models are expensive and a Gaussian process emulator has been introduced
to reduce the overall computation load.
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