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Summary:

The aim of this paper is to present a computatigredficient method for approximation of a
response function in several variables using a hoess of multivariate rational functions in low-
rank format, constructed via power series summatibms method is well suited for high-
dimensional problems where evaluating responsetifmmaowill take long time. In addition to
sensitivity analysis, models based on the ratiémattions, are able to provide further insight into
response of a man-made systems (or physical pher@meder investigation; e.g. it is possible to
reconstruct response hypersurfaces beyond regatrwtas used to build the approximation, and
certain types of singularities can be located vaigh accuracy.

The concept of Padé-approximants, which is thedteshthe proposed method, has been already
generalized to multivariate function approximatjh It is well known that such approximants, appli
in summation of power series, are useful for imegtion of models (i.e. parametrized response
functions). “Magically”, it is possible to deducmportant properties of a model from a given power
series. For example, local behavior near a singylaharacterized with parameter values for whach
model is unbounded or not unique, can be analyzélimportant to note that Padé approximation is
the optimal technique in the construction of modledd belong to the class of rational functionsl for
more general class of algebraic-function modeks Harmite-Padé-approximants are more suitable [2].
In this paper, we propose the method that is ableeduce computational cost of constructing the
multivariate Padé approximants [1]. Brief descdptdf the method is presented in the sequel.

Consider power series expansion of a multivariatetion,

f(2) =% f(z—0), (1)
where v = (vy, ..., vy) € Z&, is the multi-index %%, denotes the set of non-negative integers),

z=(zq,..24) € C* where C denotes the set of complex numbers, and (cy,...,c;z) is an
approximation centre point. To each multi-index corresponds the product function

(z = )" = [f=1(zx — ci) "™
The coefficientsf, = f, ., in (1) are computed by introducing the variabkensformations
7 = ¢ + prexp(iby),k =1, ..,d, i = v—1, and rewriting (1) as
f(6) = Xy fup¥exp(iv- 6), (2)
wherev - 8 denotes the dot product sep(iv - 0) = [1¢_; exp(iv ), 8 = (64, ...,0,) € R* (R is
the set of real numbers),= (py, ..., pg) € R is the radius vector, ane’ = [1¢_, px"*. Radius

vectorp and centre point are problem-dependentalues are selected so that function samples
are generated within the region wheig) is analytic and where the power series (1) core®rg

Discretisation points of the functigiff) on a tensor product grid, defined on the hyperddreain
{0 <6, <2m,1 <k <d}, can be stored as a multidimensional data arrayténsor) with elements
F(iy, ..., ig) = f(01(i1), ..., 04 (ia)) (3)

Abbreviated expression of (3) would bE(i) = f(e(i)), wherei = (iy, ...,ig) € 7%, (Z%, denotes
the set of positive integers). Equidistant sampliaonts 0, (i) = 2n (i, — 1)/ny, i, = 1, ..., ny, are

used sincef (0) is a2m-periodic function off. The expression (2) is the multivariate trigonamget
series, therefore we use Discrete Fourier Trans{@fT) to compute the coefficients in (1):

fo = g T F @ expl=iv- 0], ©)



whereN = [[¢_,n, and exp[—iv - 0(i)] = [1¢., exp[—ivi 0k (ir)].

In many practical problems, multivariate functiozen be well approximated using a sum of
finitely many separable functions. Such functioe$ong to the class of sem¢parable functions;
the following notation is used to represent suatctions:f (6, ..., 0,4) = F;1(6;) ---F4(84), where
F,(6,) arer,_, X r;, arrays with univariate functions as elements. &fwee, after discretisation, the
tensor representing a semi-separable function eamritten in the following matrix-product form:

F(iy, e, ig) = F1(i1) - Fa(ia), (5)
whereF, (i), k = 1, ...,d, are index;, - dependent matrices of the sizgs, x r,. By exploiting the
semi-separable structure, it is possible to overonrse of dimensionality occurring when sampling
on a tensor product grid. Number of stored elemients) isO(dnr?) compared t@(n%) elements in
tensor product grid (3), where= max(ng, ..., ng) andr = max(ry, ..., 74). Therefore, when the rank
r is low, we can achieve considerable savings coeaptr tensor product grid. When constructing (5),
we have used the tensor cross interpolation algor{B]. This is similar to the strategy used foe th
Tensor Train (TT) decomposition based on sequespiplication of the Singular Value Decomposition
(SVD) algorithm to construct low-rank approximasoof unfolding matrices [4]. However, there are
two major improvements which considerably reducmiper of function evaluations: a) avoid to use
complete unfolding matrices (contain all tensomedats), but rather their sub-matrices which size
increases during iterative process; and b) replae&VD algorithm with the matrix cross interpabati

When the tensoF (i) is available in the matrix-product form (5), theltivariate DFT (4) can be
computed efficiently as the product of univariateTs,
1 . , ,
Forvewa = i1 Frei) = e 5 i (i) expl—iviebi (i), (6)

and then the power series expansion (1) is appmteichas a product of,_, X r;, arrays storing
univariate expansions,

f (21, 29) = [ft=1 Zv, Fre Vi) (21 — €)%, (7)

Finally, the SVD-based univariate Padé approxiomagilgorithm [5] is applied in the summation
of each univariate series in (7), and the followilogv-rank structure of the multivariate Padé -
approximant is obtained:

f (21, 2q) = [Ti=1 Pic(2i), (8)
where the elements ef_, X r; arraysP,(z,), k = 1, ..., d, are univariate rational functions.

Numerical examples are devised to illustrate efficy and accuracy of the proposed method.
In addition, this paper presents a practical agpion of the method. We show how to reconstruct
solution hypersurfaces and locate singularitieshim non-linear power flow problem associated
with investigation of steady-state voltage stapilit electric power networks [6].
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