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Abstract

After having performed a sensibility analysis for screening influential inputs of a computer
code, practitionners should aim at making the code outputs as close as possible to a set of
field experiments in order to improve its predictive capability. That issue is called calibration
(Campbell, 2006).

Our framework deals with a scalar physical quantity of interest, referred to as r(x), where
x is a vector of control variables and with a computer code yθ(x) where θ ∈ T is a vector of
parameters having no observable counterpart in the reality and thus most often uncertain.
The goal of statistical calibration consists in reducing the uncertainty affecting θ with the
help of a statistical model which links the code outputs with the field measurements, denoted

by zf := (zf1 , · · · , zfn) which are related to n experimental sites Xf =
[
xf1 , · · · ,xfn

]T
. By

assuming no code discrepancy can occur between yθ(x) and r(x) for any x ∈ X , we have for
1 ≤ i ≤ n:

zfi = yθ(xfi ) + εi, (1)

where
εi ∼ Ei =

i.i.d.
N (0, λ2)

statistically encodes both the residual variability and the measurements error of the physical
experiment (Kennedy and O’Hagan, 2001). In a Bayesian setting, where λ2 is assumed
known, the posterior distribution of θ is then written as

π(θ|zf ) ∝ L(zf |θ)π(θ),

∝ 1

(
√

2πλ)n
exp

[
− 1

2λ2
SS(θ)

]
π(θ), (2)

where
SS(θ) = ||zf − yθ(Xf )||2 (3)

is the sum of squares of the residuals between the simulations and the field measurements.
It is usually sampled using MCMC methods that become infeasible when the simulations are
highly time-consuming. A way to circumvent this issue consists in replacing the computer
code with a Gaussian Process Emulator (GPE) (Santner et al., 2003). It is built thanks
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to a learning sample of simulations y(DM ) run over a design of experiments DM . Then, a
surrogate posterior distribution πS based on the GPE can be established:

πS(θ|zf , y(DM )) ∝ LS(zf |y(DM ),θ)π(θ). (4)

where

LS(zf |y(DM ),θ) ∝ |VM
Ψ̂,σ̂2(θ) + λ2In|−1/2 exp

{
− 1

2

[
(zf − µM

β̂,Ψ̂
(Dθ))T)

(VM
Ψ̂,σ̂2(θ) + λ2In)−1(zf − µM

β̂,Ψ̂
(Dθ))

]}
(5)

is the conditionnal likelihood of zf with respect to y(DM ) where (β̂, Ψ̂, σ̂2) are plug-in
estimators of the GPE’s parameters. The surrogate posterior (4) and the target posterior
(2) are different in that yθ(Xf ) is replaced by the mean vector of the GPE µMβ (Dθ) and the

conditional covariance matrix VM
Ψ̂,σ̂2

(θ) is added up to λ2In.

By doing so, the surrogate posterior can be sampled using MCMC methods instead of the
target one, but this is subject to an error which strongly depends on the numerical design of
experiments DM used to fit the GPE. The most used default strategy consists in building
a Space Filling Design (SFD), such as an optimized Latin Hypercube (Morris and Mitchell,
1995). Our numerical tests have actually shown that they do not work well, leading to large
errors in terms of the Kullback Leibler (KL) divergence (Cover and Thomas, 1991) between
the surrogate posterior and the target posterior, that is written:

KL
(
π(θ|zf )||πS(θ|zf , y(DM ))

)
=

∫
T
π(θ|zf )

(
log (π(θ|zf ))− log (πS(θ|zf , y(DM ))

)
dθ.

(6)
Instead of using SFD, we propose to build in an adaptive fashion a proper design limited
to Xf × T by means of the Expected Improvement criterion (Jones et al., 1998). Our
simulation studies performed on several toy functions in 2d and 6d have shown the efficiency
of the sequential strategies for reducing the KL divergence (6).
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