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Context
A dynamic vehicle depends on various subsystems which characterize the vehicle behavior. Each
subsystem is described by a mathematical model depending on a significant number of parameters.
These parameters are very often uncertain due to a lack of measurements, knowledge due to expert
judgment. The uncertainty in the parameters propagates through the model and manifests itself
at the model output. In order to understand the vehicle behavior, it is essential to know the
parameters responsible for the model output variation. Uncertainty and sensitivity analysis can
help to evaluate the impact of this lack of knowledge on the model response ([1,2]). In the literature,
sensitivity analysis for dynamical models is not straightforward. In this context, the work presented
in this paper investigates a novel technique of global sensitivity analysis for dynamical models. The
originality of the method is to use control theory tools for sensitivity analysis purposes.
Methodology
Consider a dynamical linear system presented in state space form given by:∑

SY S

:

{
ẋ(t) = A(θ)x(t) +B(θ)u(t)
y(t) = C(θ)x(t) +D(θ)u(t)

(1)

where x(t) ∈ Rnx is the state vector, y(t) ∈ Rnp the output vector, u(t) ∈ Rnm the input vec-
tor and t ∈ R+ refers to the time. A(.) ∈ Rnx×nx is the state matrix, B(.) ∈ Rnx×np the input
matrix, C(.) ∈ Rl×nx the output matrix and D(.) ∈ Rl×np the feedforward matrix. The vector
θ = [θ1, . . . , θnθ ] represents the nθ uncertain parameters. As the parameters θi are uncertain, they
are considered as random variables defined by their probability density function (uniform,Gaussian,
etc.). The uncertainty of the parameters is propagated through the model on the output y(t) which
becomes also uncertain. The aim is to determine the most influential parameters θi on the output
uncertainty.
The proposed method is based on the analysis of the system energy required to drive a state to
a final one by the input. If this energy is minimal, the system is said controllable. Controllability
means that the system dynamics can be modified when acting on the input signal u(t). The system
energy depends on the uncertain parameters θ. Intuitively, if the parameter variation leads to a
significant variation of the energy, it means that this parameter variation acts on the system dyna-
mics and leads to a system that is more or less controllable. In this case, the system controllability
is sensitive to this parameter variation and thus this parameter is influential on the system states.
The system energy can be determined through the reachability Gramian ([3]).
The infinite time reachability Gramian, denoted for short WR(θ), when tf →∞ is given by:

WR(θ) = lim
t→∞

WR(θ, t0, tf ) =

∞∫
0

eA(θ)tB(θ)B(θ)T eA(θ)T tdt (2)

and it is obtained by solving the continuous-time Lyapunov equation :

A(θ)WR(θ) +WR(θ)A(θ)T +B(θ)B(θ)T = 0 (3)
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The minimal energy allowing to bring a system to a final state xf , since x(t0) = 0, is given by:

‖u‖2 =

∞∫
0

uT (t)u(t)dt = xTfWR(θ)−1xf (4)

The quantity xTfW
−1
R xf in (4) represents an hyperellipsoid which includes all the reachable states

obtained from the optimal input sequence uopt. This quantity depends on the inverse of the rea-
chability Gramian W−1R (θ). Each eigenvalue of W−1R (θ), denoted λi, corresponds to one system
state. In fact, these eigenvalues determine the size of the axes of the hyperellipsoid and the eigen-
vectors determine its directions. Intuitively, the variation of an influential parameter will lead to a
significant change of the dimension of the hyperellipsoid axes (see FIGURE 1).

v2

λ2

v1
λ1

xT WR (θ)−1x xT WR (θ±∆θ)−1x
±∆θ

Figure 1 – Example of second-order system energy variation according to parameters variation.

According to (2) and (4), the eigenvalues of W−1R provide information on how controllable the
system is. Higher the eigenvalues are, lower the required energy is and thus more controllable
the system is ([3]). If any λi = 0, the system is not controllable. In fact, each eigenvalue λi is a
function of the system parameters θ. The eigenvalues represent a measure of the controllability,
that is the sensitivity of the system dynamics to variation. In this way, the parameters involved
in the expression of the eigenvalues are influential on the system states. If the eigenvalue does not
depend on a given parameter, this parameter is not influential on the state variation. From the
structural expression of W−1R (θ), the qualitative influence of the parameters can be deduced. Then,
to quantify the individual contribution of each parameter to the variance of the energy ‖u‖2, the
Sobol’ indices can be computed.
The advantage of the proposed approach is that the system energy does not depend on time and
is thus scalar. Furthermore, it takes into account the global model behavior.
The approach is applied on a bicycle model describing dynamic behavior of the vehicle.
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