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Monte Carlo (MC) simulation employing Latin Hypercube Sampling (LHS) is one of the most 

popular modelling tools. While its application in areas like experimental design is well justified the 

efficiency of LHS in other areas such as high dimensional integration can be no better than the standard 

MC method based on random numbers. To provide a high efficiency of high dimensional integration 

high uniformity of sampling is required. LHS - being well stratified in one dimension by design, does not 

provide good uniformity properties in high dimensions. It is known that for high dimensional integrals 

the convergence rate of the MC estimates based on random sampling is O(1/sqrt(N )), where N is the 

number of sampled points. A higher rate of convergence can be obtained by using Quasi Monte Carlo 

(QMC) methods based on low-discrepancy sequences. Asymptotically, QMC can provide the rate of 

convergence O(1/N). We compare efficiencies of three sampling methods: the MC method with both 

random and LHS sampling, and the QMC method with sampling based on Sobol’ sequences. We apply 

the high-dimensional Sobol’ sequence generator with advanced uniformity properties (technically these 

are known as property A for all dimensions and property A' for adjacent dimensions). Firstly we 

compare L2 discrepancies and show that the QMC method has the lowest discrepancy up to dimension 

20. Secondly, we use a number of test functions of various complexities for high dimensional 

integration. Using global sensitivity analysis functions are classified with respect to their dependence on 

the input variables: functions with not equally important variables (type A), functions with equally 

important variables and dominant low order terms (type B) and functions with equally important 

variables and with dominant interaction terms (type C). Comparison shows that for types A and B 

functions convergence of  the QMC method is close to O(1/N), while the MC method has a convergence 

close to O(1/sqrt(N )). For types C functions convergence of the QMC method significantly drops; 

however it still remains the most efficient method among three sampling techniques. The ANOVA 

decomposition in a general case can be presented as 
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for MC. Here 2

LHS  and 2

MC  are the convergence rates. 
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In the ANOVA decomposition of type B functions, the effective dimension 
Sd  is small, hence 

( )r x  is also small comparing to the main effects. In the extreme case 
Sd  is equal to 1, and a function 

f(x) can be presented as a sum of one-dimensional functions 
0( ) ( )i i

i

f x f f x  . This means that 

only one-dimensional projections of the sampled points play a role in the function approximation. For 

type B functions LHS can achieve a much higher convergence rate than that of the standard MC. The 

results are summarized in Table 1 

Table 1 Classification of functions based on the effective dimensions. Two complementary 

subsets of variables y and z are considered: ( , )x y z . 

Type Description Relationship 
between 
Si and Si

tot 

dT dS QMC is 
more 

efficient 
than MC 

LHS is 
more 

efficient 
than MC 

A A few dominant 
variables 

Sy
tot/ny >> Sz

tot/ nz 
<< n << n Yes No 

B No unimportant 
subsets; only low-
order interaction 
terms are present 

Si ≈ Sj,  i, j 

Si
 / Si

tot  ≈ 1,  i 

≈ n << n Yes Yes 

C No unimportant 
subsets;  high-
order interaction 
terms are present 

Si ≈ Sj,  i, j 

Si
 / Si

tot  << 1,  i 

≈ n ≈ n No No 

To test the classification presented above MC, LHS and QMC integration methods were 

compared considering a set of test functions. Computed root mean square error (RMSE) was 

approximated by the formula , 0 1cN     . For a function presented in Fig. 1 at n=360 the exponent 

for algebraic decay in the case of QMC integration 
QMC  = 0.94. The LHS method shows the same 

convergence rate 0.5   as the MC method.  

In summary QMC appears preferable to LHS overall, consideration given to the different 

typologies of functions. The objection that LHS can be made better by optimization (searching an 

optimum LHS by brute force methods) suffers from both computational hurdle and poor elegance.  

 



Fig. 1. RMSE versus the number of sampled points for type A model   
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