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I. Objective Variance-based sensitivity analysis [1-2] and multivariate sensitivity analysis
[3-5] aim at apportioning the variability of the model output(s) into input factors and their interac-
tions. Sobol’s total index, which accounts for the effects of interactions, is often used for selecting
the most influential parameters. In this paper, we propose a generalized and optimal estimator of
the variance of the total effect (non-normalized total sensitivity index- TSI). The generalized and
optimal estimator of the non-normalized TSI makes use of p-fold sets of input values to obtain the
TSI estimates. When p = 2, we obtain the Jansen’s estimator. An illustration to a flood model
shows that we can improve the TSI estimations using p larger than 2.

II. Methods Let Y = f(X) be a model output with X = (X1, . . . , Xd), d independent input
factors (A1). Under assumption E

(
f2(X)

)
< +∞ (A2), we have the Hoeffding decomposition:

f(X) =
∑

u⊆{1,2,...d}

fu(Xu) , (1)

where f∅ = E [f(X)], fj(Xj) = E [f(X)|Xj ]− f∅, and E [fu(Xu)] = 0.
It is shown in [2,6] that the non-normalized TSI of a set of inputs Xu = (Xj , j ∈ u), is also defined
as follows:

Dtot
u = E (f(X)− E [f(X)|X∼u])

2
. (2)

Definition 1 Let us consider independent samples X
(1)
u , . . . ,X

(p)
u from the measure µ(Xu), X

(1)′

u , . . . ,X
(p)′

u

from µ(Xu) and X∼u = (Xj , j ∈ {1, 2, . . . , d}\u) from µ(X∼u). We define a kernel function as:

K
(
X(1)

u , . . . ,X(p)
u ,X∼u

)
=
p− 1

p2

p∑
l=1

 p∑
j=1

c
(l)
j [f(X(l)

u ,X∼u)− f(X(j)
u ,X∼u)]

2

, (3)

with c
(l)
j = 1

p−1 if j 6= l and 0 otherwise (A3).

If we define σ2
l,1 = Cov

[
K
(
X

(1)
u , . . . ,X

(l)
u ,X

(l+1)
u , . . . ,X

(p)
u ,X∼u

)
,K
(
X

(1)
u , . . . ,X

(l)
u ,X

(l+1)′

u , . . . ,X
(p)′

u ,X∼u

)]
,

then it satisfies σ2
l,1 = V

(
E
[
K
(
X

(1)
u , . . . ,X

(p)
u ,X∼u

)
|X(1)

u , . . . ,X
(l)
u ,X∼u

])
([7]).

Theorem 1 Let Y = f(X) and consider independent samples
(
X

(1)
i,u,Xi,∼u

)
, . . . ,

(
X

(p)
i,u ,Xi,∼u

)
from µ(X) with i = 1, 2, . . . , m. Under assumptions A1, A3 (∀ j, l = 1, 2, . . . , p, c

(l)
j = 1

p−1 if

j 6= l and 0 otherwise), A4 (E
[
f4(X)

]
< +∞), and A5 (2 ≤ p), we have:

i) the optimal, unbiased estimator of Dtot
u for a given p is:

D̂tot
u =

p− 1

mp2

m∑
i=1

p∑
l=1

 p∑
j=1

c
(l)
j [f(X

(l)
i,u,Xi,∼u)− f(X

(j)
i,u,Xi,∼u)]

2

; (4)

ii) some properties of D̂tot
u are:

mE
(
D̂tot

u −Dtot
u

)2
= σ2

p,1,
√
m
(
D̂tot

u −Dtot
u

)
D−→ N

(
0, σ2

p,1

)
. (5)
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Figure 1: Log-RMSEs against the total number of model runs (in log10) for four values of the
degree p = 3, 4, 5, 6. For each degree, we show the corresponding RMSE (solid line) and the
RMSE for Jansens estimator (dashed line).

Proof The kernel K(·) is symmetric with respect to its first argument (X
(1)
u , . . . ,X

(p)
u ) and we

have E
[
K(X

(1)
u , . . . ,X

(p)
u ,X∼u)

]
= Dtot

u . The ponits i) and ii) are obtained using the properties

of U-statistics. (see [8] for more details). �

III. Results and Conclusions To illustrate our approach, we consider a flood model that
simulates the height of a river compared to the height of a dyke [2,9]. The model includes 8 input
factors. We compared the TSI estimates for four different values of p = 3, 4, 5, 6 to those for
Jansen’s estimator (p = 2), using Sobol’s design. Figure 1 shows the average of the root mean
square errors (RMSEs) of the 8 inputs against the total number of model runs for each degree
p = 3, 4, 5, 6 compared to p = 2. It comes out that the degree p = 6 provides the best estimations.
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